Overall Statistics |
Total Trades
33
Average Win
0.32%
Average Loss
-0.29%
Compounding Annual Return
63.135%
Drawdown
3.800%
Expectancy
0.192
Net Profit
8.232%
Sharpe Ratio
2.205
Loss Rate
43%
Win Rate
57%
Profit-Loss Ratio
1.09
Alpha
0.355
Beta
1.255
Annual Standard Deviation
0.189
Annual Variance
0.036
Information Ratio
2.911
Tracking Error
0.126
Treynor Ratio
0.332
Total Fees
$51.70
|
from System.Collections.Generic import List from QuantConnect.Data.UniverseSelection import * class CoarseFineFundamentalComboAlgorithm(QCAlgorithm): '''In this algorithm we demonstrate how to define a universe as a combination of use the coarse fundamental data and fine fundamental data''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014,01,01) #Set Start Date self.SetEndDate(2014,03,01) #Set End Date self.SetCash(50000) #Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Daily # this add universe method accepts two parameters: # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol> # - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.__numberOfSymbols = 25 self.__numberOfSymbolsFine = 5 self._changes = SecurityChanges.None # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection top5 = sortedByDollarVolume[:self.__numberOfSymbols] # we need to return only the symbol objects list = List[Symbol]() for x in top5: list.Add(x.Symbol) return list # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' def FineSelectionFunction(self, fine): # sort descending by P/E ratio sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True) # select the stocks in manufactory industry sortedByIndustry = [x for x in sortedByPeRatio if x.CompanyReference.IndustryTemplateCode == 'N'] for i in sortedByIndustry: self.Log(i.CompanyReference.IndustryTemplateCode) # take the top entries from our sorted collection topFine = sortedByIndustry[:self.__numberOfSymbolsFine] list = List[Symbol]() for x in topFine: list.Add(x.Symbol) return list def OnData(self, data): # if we have no changes, do nothing if self._changes == SecurityChanges.None: return # liquidate removed securities for security in self._changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # we want 20% allocation in each security in our universe for security in self._changes.AddedSecurities: self.SetHoldings(security.Symbol, 0.2) self._changes = SecurityChanges.None; # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self._changes = changes