| Overall Statistics |
|
Total Trades 57 Average Win 19.67% Average Loss -1.62% Compounding Annual Return 10.761% Drawdown 19.000% Expectancy 3.637 Net Profit 676.279% Sharpe Ratio 0.782 Loss Rate 65% Win Rate 35% Profit-Loss Ratio 12.14 Alpha 0.016 Beta 4.834 Annual Standard Deviation 0.143 Annual Variance 0.02 Information Ratio 0.643 Tracking Error 0.143 Treynor Ratio 0.023 Total Fees $102.05 |
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// This algorithm will go long when the 50 crosses above the 200 and will short
/// when the 50 crosses back below the 200.
/// </summary>
public class MovingAverageCrossAlgorithm : QCAlgorithm
{
private string _symbol = "SPY";
private DateTime _previous;
private SimpleMovingAverage _fast;
private SimpleMovingAverage _slow;
// private SimpleMovingAverage[] _ribbon;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
// set up our analysis span
SetStartDate(1998, 01, 02);
//SetEndDate(2017, 07, 01);
SetCash(10000);
// request SPY data with minute resolution
AddSecurity(SecurityType.Equity, _symbol, Resolution.Minute);
// create a 50 day exponential moving average
_fast = SMA(_symbol, 50, Resolution.Daily);
// create a 200 day exponential moving average
_slow = SMA(_symbol, 200, Resolution.Daily);
// var ribbonCount = 4;
// var ribbonInterval = 50;
// _ribbon = Enumerable.Range(0, ribbonCount).Select(x => SMA(_symbol, (x + 1)*ribbonInterval, Resolution.Daily)).ToArray();
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">TradeBars IDictionary object with your stock data</param>
public void OnData(TradeBars data)
{
// a couple things to notice in this method:
// 1. We never need to 'update' our indicators with the data, the engine takes care of this for us
// 2. We can use indicators directly in math expressions
// 3. We can easily plot many indicators at the same time
// wait for our slow ema to fully initialize
if (!_slow.IsReady) return;
// only once per day
if (_previous.Date == Time.Date) return;
// define a small tolerance on our checks to avoid bouncing
const decimal tolerance = 0.00015m;
var holdings = Portfolio[_symbol].Quantity;
var profitloss = Portfolio[_symbol].UnrealizedProfit;
// we only want to go long if we're currently short or flat
if (holdings <= 0)
{
// if the fast is greater than the slow, we'll go long
if (_fast > _slow * (1 + tolerance))
{
Log("BUY >> " + Securities[_symbol].Price);
SetHoldings(_symbol, 1.0);
}
}
// we only want to liquidate if we're currently long
// if the fast is less than the slow we'll liquidate our long
//if (_fast < _slow)
if (holdings > 0 && _fast < _slow)
{
Log("SELL >> " + Securities[_symbol].Price);
SetHoldings(_symbol, -1.0);
//Liquidate(_symbol);
}
if (profitloss <= -420)
{
//Log("SELL >> " + Securities[_symbol].Price);
//SetHoldings(_symbol, -1.0);
Liquidate(_symbol);
}
Plot(_symbol, "Price", data[_symbol].Price);
// easily plot indicators, the series name will be the name of the indicator
Plot(_symbol, _fast, _slow);
//Plot("Ribbon", _ribbon);
_previous = Time;
}
}
}