| Overall Statistics |
|
Total Orders
15439
Average Win
0.13%
Average Loss
-0.24%
Compounding Annual Return
6.633%
Drawdown
33.900%
Expectancy
0.077
Start Equity
10000000
End Equity
49344666.91
Net Profit
393.447%
Sharpe Ratio
0.283
Sortino Ratio
0.334
Probabilistic Sharpe Ratio
0.116%
Loss Rate
31%
Win Rate
69%
Profit-Loss Ratio
0.55
Alpha
0.032
Beta
-0.087
Annual Standard Deviation
0.101
Annual Variance
0.01
Information Ratio
-0.071
Tracking Error
0.199
Treynor Ratio
-0.329
Total Fees
$1327164.24
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_S1.QuantpediaFutures 2S
Portfolio Turnover
8.20%
|
# https://quantpedia.com/strategies/time-series-momentum-effect/
#
# The investment universe consists of 24 commodity futures, 12 cross-currency pairs (with 9 underlying currencies), 9 developed equity indices, and 13 developed
# government bond futures.
# Every month, the investor considers whether the excess return of each asset over the past 12 months is positive or negative and goes long on the contract if it is
# positive and short if negative. The position size is set to be inversely proportional to the instrument’s volatility. A univariate GARCH model is used to estimated
# ex-ante volatility in the source paper. However, other simple models could probably be easily used with good results (for example, the easiest one would be using
# historical volatility instead of estimated volatility). The portfolio is rebalanced monthly.
#
# QC implementation changes:
# - instead of GARCH model volatility, we have used simple historical volatility.
from math import sqrt
from AlgorithmImports import *
import numpy as np
import pandas as pd
class TimeSeriesMomentum(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2000, 1, 1)
self.SetCash(10_000_000)
self.symbols: List[str] = [
"CME_S1", # Soybean Futures, Continuous Contract
"CME_W1", # Wheat Futures, Continuous Contract
"CME_SM1", # Soybean Meal Futures, Continuous Contract
"CME_BO1", # Soybean Oil Futures, Continuous Contract
"CME_C1", # Corn Futures, Continuous Contract
"CME_O1", # Oats Futures, Continuous Contract
"CME_LC1", # Live Cattle Futures, Continuous Contract
"CME_FC1", # Feeder Cattle Futures, Continuous Contract
"CME_LN1", # Lean Hog Futures, Continuous Contract
"CME_GC1", # Gold Futures, Continuous Contract
"CME_SI1", # Silver Futures, Continuous Contract
"CME_PL1", # Platinum Futures, Continuous Contract
"CME_CL1", # Crude Oil Futures, Continuous Contract
"CME_HG1", # Copper Futures, Continuous Contract
"CME_LB1", # Random Length Lumber Futures, Continuous Contract
"CME_NG1", # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
"CME_PA1", # Palladium Futures, Continuous Contract
"CME_RR1", # Rough Rice Futures, Continuous Contract
"CME_DA1", # Class III Milk Futures
"CME_RB1", # Gasoline Futures, Continuous Contract
"CME_KW1", # Wheat Kansas, Continuous Contract
"ICE_CC1", # Cocoa Futures, Continuous Contract
"ICE_CT1", # Cotton No. 2 Futures, Continuous Contract
"ICE_KC1", # Coffee C Futures, Continuous Contract
"ICE_O1", # Heating Oil Futures, Continuous Contract
"ICE_OJ1", # Orange Juice Futures, Continuous Contract
"ICE_SB1", # Sugar No. 11 Futures, Continuous Contract
"ICE_RS1", # Canola Futures, Continuous Contract
"ICE_GO1", # Gas Oil Futures, Continuous Contract
"ICE_WT1", # WTI Crude Futures, Continuous Contract
"CME_AD1", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1", # British Pound Futures, Continuous Contract #1
"CME_CD1", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1", # Euro FX Futures, Continuous Contract #1
"CME_JY1", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1", # Mexican Peso Futures, Continuous Contract #1
"CME_NE1", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1", # Swiss Franc Futures, Continuous Contract #1
"ICE_DX1", # US Dollar Index Futures, Continuous Contract #1
"CME_NQ1", # E-mini NASDAQ 100 Futures, Continuous Contract #1
"EUREX_FDAX1", # DAX Futures, Continuous Contract #1
"CME_ES1", # E-mini S&P 500 Futures, Continuous Contract #1
"EUREX_FSMI1", # SMI Futures, Continuous Contract #1
"EUREX_FSTX1", # STOXX Europe 50 Index Futures, Continuous Contract #1
"LIFFE_FCE1", # CAC40 Index Futures, Continuous Contract #1
"LIFFE_Z1", # FTSE 100 Index Futures, Continuous Contract #1
"SGX_NK1", # SGX Nikkei 225 Index Futures, Continuous Contract #1
"CME_MD1", # E-mini S&P MidCap 400 Futures
"CME_TY1", # 10 Yr Note Futures, Continuous Contract #1
"CME_FV1", # 5 Yr Note Futures, Continuous Contract #1
"CME_TU1", # 2 Yr Note Futures, Continuous Contract #1
"ASX_XT1", # 10 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
"ASX_YT1", # 3 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
"EUREX_FGBL1", # Euro-Bund (10Y) Futures, Continuous Contract #1
"EUREX_FBTP1", # Long-Term Euro-BTP Futures, Continuous Contract #1
"EUREX_FGBM1", # Euro-Bobl Futures, Continuous Contract #1
"EUREX_FGBS1", # Euro-Schatz Futures, Continuous Contract #1
"SGX_JB1", # SGX 10-Year Mini Japanese Government Bond Futures
"LIFFE_R1" # Long Gilt Futures, Continuous Contract #1
"MX_CGB1", # Ten-Year Government of Canada Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
]
self.period: int = 12 * 21
self.SetWarmUp(self.period, Resolution.Daily)
self.targeted_volatility: float = .1
self.vol_target_period: int = 60
self.leverage_cap: int = 4
leverage: int = 20
# Daily rolled data.
self.data: Dict[str, RollingWindow] = {}
for symbol in self.symbols:
# Back adjusted and spliced data import.
data: Security = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(leverage)
self.data[symbol] = RollingWindow[float](self.period)
self.recent_month: int = -1
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
self.settings.daily_precise_end_time = False
def OnData(self, slice: Slice) -> None:
custom_data_last_update_date: Dict[str, datetime.date] = QuantpediaFutures.get_last_update_date()
# Store daily data.
for symbol in self.symbols:
if slice.contains_key(symbol) and slice[symbol]:
price = slice[symbol].Value
self.data[symbol].Add(price)
if self.recent_month == self.Time.month:
return
self.recent_month = self.Time.month
# Performance and volatility data.
performance_volatility: Dict[str, Tuple[float, float]] = {}
daily_returns: Dict[str, float] = {}
for symbol in self.symbols:
if self.data[symbol].IsReady:
# check if data is still coming
if self.Securities[symbol].GetLastData() and self.time.date() > custom_data_last_update_date[symbol]:
self.liquidate(symbol)
continue
back_adjusted_prices: np.ndarray = np.array([x for x in self.data[symbol]])
performance: float = back_adjusted_prices[0] / back_adjusted_prices[-1] - 1
daily_rets: np.ndarray = back_adjusted_prices[:-1] / back_adjusted_prices[1:] - 1
back_adjusted_prices: np.ndarray = back_adjusted_prices[:self.vol_target_period]
daily_rets: np.ndarray = back_adjusted_prices[:-1] / back_adjusted_prices[1:] - 1
volatility_3M: float = np.std(daily_rets) * sqrt(252)
daily_returns[symbol] = daily_rets[::-1][:self.vol_target_period]
performance_volatility[symbol] = (performance, volatility_3M)
if len(performance_volatility) == 0: return
# Performance sorting.
long: List[str] = [x[0] for x in performance_volatility.items() if x[1][0] > 0]
short: List[str] = [x[0] for x in performance_volatility.items() if x[1][0] < 0]
weight_by_symbol: Dict[str, float] = {}
# Volatility weighting long and short leg separately.
ls_leverage: List[float] = [] # long and short leverage
for sym_i, symbols in enumerate([long, short]):
total_volatility: float = sum([1/performance_volatility[x][1] for x in symbols])
# Inverse volatility weighting.
weights: np.ndarray = np.array([(1/performance_volatility[x][1]) / total_volatility for x in symbols])
weights_sum: float = sum(weights)
weights: float = weights/weights_sum
df: DataFrame = pd.DataFrame()
i: int = 0
for symbol in symbols:
df[str(symbol)] = [x for x in daily_returns[symbol]]
weight_by_symbol[symbol] = weights[i] if sym_i == 0 else -weights[i]
i += 1
# volatility targeting
portfolio_vol: float = np.sqrt(np.dot(weights.T, np.dot(df.cov() * 252, weights.T)))
leverage: float = self.targeted_volatility / portfolio_vol
leverage: float = min(self.leverage_cap, leverage) # cap max leverage
ls_leverage.append(leverage)
# Trade execution.
invested: List[str] = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol, w in weight_by_symbol.items():
if slice.contains_key(symbol) and slice[symbol]:
if w >= 0:
self.SetHoldings(symbol, w*ls_leverage[0])
# self.SetHoldings(symbol, w)
else:
self.SetHoldings(symbol, w*ls_leverage[1])
# self.SetHoldings(symbol, w)
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
_last_update_date: Dict[Symbol, datetime.date] = {}
@staticmethod
def get_last_update_date() -> Dict[Symbol, datetime.date]:
return QuantpediaFutures._last_update_date
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
if config.Symbol.Value not in QuantpediaFutures._last_update_date:
QuantpediaFutures._last_update_date[config.Symbol.Value] = datetime(1,1,1).date()
if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol.Value]:
QuantpediaFutures._last_update_date[config.Symbol.Value] = data.Time.date()
return data
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))