Overall Statistics |
Total Orders
23383
Average Win
0.03%
Average Loss
-0.02%
Compounding Annual Return
-0.618%
Drawdown
27.000%
Expectancy
-0.032
Start Equity
100000
End Equity
91149.52
Net Profit
-8.850%
Sharpe Ratio
-0.406
Sortino Ratio
-0.452
Probabilistic Sharpe Ratio
0.000%
Loss Rate
56%
Win Rate
44%
Profit-Loss Ratio
1.20
Alpha
-0.013
Beta
-0.053
Annual Standard Deviation
0.045
Annual Variance
0.002
Information Ratio
-0.702
Tracking Error
0.157
Treynor Ratio
0.344
Total Fees
$137.62
Estimated Strategy Capacity
$100000000.00
Lowest Capacity Asset
CIM TXOSBV8QR5UT
Portfolio Turnover
0.57%
|
# https://quantpedia.com/strategies/esg-factor-investing-strategy/ # # As we have previously mentioned, the choice of the database of ESG scores can alter results. This paper uses for the assessments of # environment, social, and governance performance of single firms database provided by Asset4. Scores are updated every year, therefore # to obtain monthly ESG data, the scores remain unchanged until the next assessment. # The investment universe consists of stocks of the North America region (Canada and the United States) that have ESG scores available. # Stocks with a price of less than one USD are excluded. Paper examines the returns as abnormal returns according to the methodology of # Daniel et al. (1997). Such methodology controls for risk factors such as size, book-to-market ratio, and momentum. The idea is to match # a stock along with the mentioned factors to a benchmark portfolio that contains stocks with similar characteristics. Therefore, for the # North America region, we have 4×4 benchmark portfolios. The abnormal return is calculated as the return of stock minus the return of # stock´s matching benchmark portfolio return (equation 1, page 13). # Finally, each month stocks are ranked according to their E, S and G scores. Long top 20% stocks of each score and short the bottom 20% # stocks of each score. Therefore, we have one complex strategy that consists of three individual strategies (for representative purposes, # the paper examines each strategy individually). The strategy is equally-weighted: both stocks in the quintiles and individual strategies. # The strategy is rebalanced yearly. # # QC implementation changes: # - Universe consists of ~700 stocks with ESG score data. #region imports from AlgorithmImports import * from numpy import floor from typing import List, Dict from dataclasses import dataclass #endregion class ESGFactorInvestingStrategy(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2009, 6, 1) self.SetCash(100_000) # Decile weighting. # True - Value weighted # False - Equally weighted self.value_weighting: bool = True # self.symbol: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.esg_data: Data = self.AddData(ESGData, 'ESG', Resolution.Daily) # All tickers from ESG database. self.tickers: List[str] = [] self.ticker_deciles: Dict[str, float] = {} self.holding_period: float = 12 self.leverage: int = 10 self.threshold: List[int] = [0.2, 0.8] self.managed_queue: List[RebalanceQueueItem] = [] self.latest_price: Dict[Symbol, float] = {} self.selection_flag: bool = False self.UniverseSettings.Leverage = self.leverage self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalSelectionFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0. def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged self.latest_price.clear() selected: List[Fundamental] = [ x for x in fundamental if x.MarketCap != 0 and (x.Symbol.Value).lower() in self.tickers ] for stock in selected: symbol: Symbol = stock.Symbol self.latest_price[symbol] = stock.AdjustedPrice # Store symbol/market cap pair. long: List[Fundamental] = [x for x in selected if (x.Symbol.Value in self.ticker_deciles) and \ (self.ticker_deciles[x.Symbol.Value] is not None) and \ (self.ticker_deciles[x.Symbol.Value] >= self.threshold[1])] short: List[Fundamental] = [x for x in selected if (x.Symbol.Value in self.ticker_deciles) and \ (self.ticker_deciles[x.Symbol.Value] is not None) and \ (self.ticker_deciles[x.Symbol.Value] <= self.threshold[0])] weights: List[Tuple[Symbol, float]] = [] # ew if not self.value_weighting: for i, portfolio in enumerate([long, short]): for stock in portfolio: w: float = self.Portfolio.TotalPortfolioValue / self.holding_period / len(portfolio) weights.append((stock.Symbol, ((-1) ** i) * floor(w / self.latest_price[stock.Symbol]))) # vw else: for i, portfolio in enumerate([long, short]): mc_sum: float = sum(list(map(lambda x: x.MarketCap, portfolio))) for stock in portfolio: w: float = self.Portfolio.TotalPortfolioValue / self.holding_period weights.append((stock.Symbol, ((-1) ** i) * floor((w * (stock.MarketCap / mc_sum))) / self.latest_price[stock.Symbol])) self.managed_queue.append(RebalanceQueueItem(weights)) self.ticker_deciles.clear() return [x.Symbol for x in long + short] def OnData(self, slice: Slice) -> None: new_data_arrived: bool = False custom_data_last_update_date: datetime.date = ESGData.get_last_update_date() if self.esg_data.get_last_data() and self.time.date() > custom_data_last_update_date: self.liquidate() return if slice.contains_key('ESG') and slice['ESG']: # Store universe tickers. if len(self.tickers) == 0: # TODO '_typename' in storage dictionary? self.tickers = [x.Key for x in self.esg_data.GetLastData().GetStorageDictionary()][1:-1] # Store history for every ticker. for ticker in self.tickers: ticker_u: str = ticker.upper() if ticker_u not in self.ticker_deciles: self.ticker_deciles[ticker_u] = None decile: float = self.esg_data.GetLastData()[ticker] self.ticker_deciles[ticker_u] = decile # trigger selection after new esg data arrived. if not self.selection_flag: new_data_arrived = True if new_data_arrived: self.selection_flag = True return if not self.selection_flag: return self.selection_flag = False # Trade execution remove_item: Union[None, RebalanceQueueItem] = None # Rebalance portfolio for item in self.managed_queue: if item.holding_period == self.holding_period: for symbol, quantity in item.symbol_q: self.MarketOrder(symbol, -quantity) remove_item = item elif item.holding_period == 0: open_symbol_q: List[RebalanceQueueItem] = [] for symbol, quantity in item.symbol_q: if abs(quantity) >= 1: if slice.contains_key(symbol) and slice[symbol]: self.MarketOrder(symbol, quantity) open_symbol_q.append((symbol, quantity)) # Only opened orders will be closed item.symbol_q = open_symbol_q item.holding_period += 1 if remove_item: self.managed_queue.remove(remove_item) @dataclass class RebalanceQueueItem(): # symbol/quantity collections symbol_q: List[Tuple[Symbol, float]] holding_period: int = 0 # ESG data. class ESGData(PythonData): _last_update_date:datetime.date = datetime(1,1,1).date() @staticmethod def get_last_update_date() -> datetime.date: return ESGData._last_update_date def __init__(self): self.tickers = [] def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource: return SubscriptionDataSource("data.quantpedia.com/backtesting_data/economic/esg_deciles_data.csv", SubscriptionTransportMedium.RemoteFile, FileFormat.Csv) def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData: data = ESGData() data.Symbol = config.Symbol if not line[0].isdigit(): self.tickers = [x for x in line.split(';')][1:] return None split = line.split(';') data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1) index = 1 for ticker in self.tickers: data[ticker] = float(split[index]) index += 1 data.Value = float(split[1]) if data.Time.date() > ESGData._last_update_date: ESGData._last_update_date = data.Time.date() return data # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee: fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))