Overall Statistics
Total Orders
23383
Average Win
0.03%
Average Loss
-0.02%
Compounding Annual Return
-0.618%
Drawdown
27.000%
Expectancy
-0.032
Start Equity
100000
End Equity
91149.52
Net Profit
-8.850%
Sharpe Ratio
-0.406
Sortino Ratio
-0.452
Probabilistic Sharpe Ratio
0.000%
Loss Rate
56%
Win Rate
44%
Profit-Loss Ratio
1.20
Alpha
-0.013
Beta
-0.053
Annual Standard Deviation
0.045
Annual Variance
0.002
Information Ratio
-0.702
Tracking Error
0.157
Treynor Ratio
0.344
Total Fees
$137.62
Estimated Strategy Capacity
$100000000.00
Lowest Capacity Asset
CIM TXOSBV8QR5UT
Portfolio Turnover
0.57%
# https://quantpedia.com/strategies/esg-factor-investing-strategy/
#
# As we have previously mentioned, the choice of the database of ESG scores can alter results. This paper uses for the assessments of 
# environment, social, and governance performance of single firms database provided by Asset4. Scores are updated every year, therefore
# to obtain monthly ESG data, the scores remain unchanged until the next assessment.
# The investment universe consists of stocks of the North America region (Canada and the United States) that have ESG scores available.
# Stocks with a price of less than one USD are excluded. Paper examines the returns as abnormal returns according to the methodology of 
# Daniel et al. (1997). Such methodology controls for risk factors such as size, book-to-market ratio, and momentum. The idea is to match
# a stock along with the mentioned factors to a benchmark portfolio that contains stocks with similar characteristics. Therefore, for the
# North America region, we have 4×4 benchmark portfolios. The abnormal return is calculated as the return of stock minus the return of 
# stock´s matching benchmark portfolio return (equation 1, page 13).
# Finally, each month stocks are ranked according to their E, S and G scores. Long top 20% stocks of each score and short the bottom 20% 
# stocks of each score. Therefore, we have one complex strategy that consists of three individual strategies (for representative purposes, 
# the paper examines each strategy individually). The strategy is equally-weighted: both stocks in the quintiles and individual strategies.
# The strategy is rebalanced yearly.
#
# QC implementation changes:
#   - Universe consists of ~700 stocks with ESG score data.

#region imports
from AlgorithmImports import *
from numpy import floor
from typing import List, Dict
from dataclasses import dataclass
#endregion

class ESGFactorInvestingStrategy(QCAlgorithm):

    def Initialize(self) -> None:
        self.SetStartDate(2009, 6, 1)
        self.SetCash(100_000)

        # Decile weighting.
        # True - Value weighted
        # False - Equally weighted
        self.value_weighting: bool = True
        
        # self.symbol: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
        self.esg_data: Data = self.AddData(ESGData, 'ESG', Resolution.Daily)
        
        # All tickers from ESG database.
        self.tickers: List[str] = []
        
        self.ticker_deciles: Dict[str, float] = {}
        
        self.holding_period: float = 12
        self.leverage: int = 10
        self.threshold: List[int] = [0.2, 0.8]
        self.managed_queue: List[RebalanceQueueItem] = []
        
        self.latest_price: Dict[Symbol, float] = {}
        
        self.selection_flag: bool = False
        self.UniverseSettings.Leverage = self.leverage
        self.UniverseSettings.Resolution = Resolution.Daily
        self.AddUniverse(self.FundamentalSelectionFunction)
        self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
    
    def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
        for security in changes.AddedSecurities:
            security.SetFeeModel(CustomFeeModel())
    
    def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
        if not self.selection_flag:
            return Universe.Unchanged
        
        self.latest_price.clear()
        
        selected: List[Fundamental] = [
            x for x in fundamental 
            if x.MarketCap != 0
            and (x.Symbol.Value).lower() in self.tickers
        ]
        
        for stock in selected:
            symbol: Symbol = stock.Symbol
            self.latest_price[symbol] = stock.AdjustedPrice

        # Store symbol/market cap pair.
        long: List[Fundamental] = [x for x in selected if (x.Symbol.Value in self.ticker_deciles) and \
                                        (self.ticker_deciles[x.Symbol.Value] is not None) and \
                                        (self.ticker_deciles[x.Symbol.Value] >= self.threshold[1])]
        
        short: List[Fundamental] = [x for x in selected if (x.Symbol.Value in self.ticker_deciles) and \
                                        (self.ticker_deciles[x.Symbol.Value] is not None) and \
                                        (self.ticker_deciles[x.Symbol.Value] <= self.threshold[0])]
        
        weights: List[Tuple[Symbol, float]] = []
        # ew
        if not self.value_weighting:
            for i, portfolio in enumerate([long, short]):
                for stock in portfolio:
                    w: float = self.Portfolio.TotalPortfolioValue / self.holding_period / len(portfolio)
                    weights.append((stock.Symbol, ((-1) ** i) * floor(w / self.latest_price[stock.Symbol])))

        # vw
        else:
            for i, portfolio in enumerate([long, short]):
                mc_sum: float = sum(list(map(lambda x: x.MarketCap, portfolio)))
                for stock in portfolio:
                    w: float = self.Portfolio.TotalPortfolioValue / self.holding_period
                    weights.append((stock.Symbol, ((-1) ** i) * floor((w * (stock.MarketCap / mc_sum))) / self.latest_price[stock.Symbol]))

        self.managed_queue.append(RebalanceQueueItem(weights))
        
        self.ticker_deciles.clear()
        
        return [x.Symbol for x in long + short]

    def OnData(self, slice: Slice) -> None:
        new_data_arrived: bool = False
        custom_data_last_update_date: datetime.date = ESGData.get_last_update_date()

        if self.esg_data.get_last_data() and self.time.date() > custom_data_last_update_date:
            self.liquidate()
            return
        
        if slice.contains_key('ESG') and slice['ESG']:
            # Store universe tickers.
            if len(self.tickers) == 0:
                # TODO '_typename' in storage dictionary?
                self.tickers = [x.Key for x in self.esg_data.GetLastData().GetStorageDictionary()][1:-1]
        
            # Store history for every ticker.
            for ticker in self.tickers:
                ticker_u: str = ticker.upper()
                if ticker_u not in self.ticker_deciles:
                    self.ticker_deciles[ticker_u] = None
                
                decile: float = self.esg_data.GetLastData()[ticker]
                self.ticker_deciles[ticker_u] = decile
                
                # trigger selection after new esg data arrived.
                if not self.selection_flag:
                    new_data_arrived = True
        
        if new_data_arrived:
            self.selection_flag = True
            return
        
        if not self.selection_flag:
            return
        self.selection_flag = False

        # Trade execution
        remove_item: Union[None, RebalanceQueueItem] = None
        
        # Rebalance portfolio
        for item in self.managed_queue:
            if item.holding_period == self.holding_period:
                for symbol, quantity in item.symbol_q:
                    self.MarketOrder(symbol, -quantity)
                            
                remove_item = item
                
            elif item.holding_period == 0:
                open_symbol_q: List[RebalanceQueueItem] = []
                
                for symbol, quantity in item.symbol_q:
                    if abs(quantity) >= 1:
                        if slice.contains_key(symbol) and slice[symbol]:
                            self.MarketOrder(symbol, quantity)
                            open_symbol_q.append((symbol, quantity))
                            
                # Only opened orders will be closed        
                item.symbol_q = open_symbol_q
                
            item.holding_period += 1
            
        if remove_item:
            self.managed_queue.remove(remove_item)

@dataclass
class RebalanceQueueItem():
    # symbol/quantity collections
    symbol_q: List[Tuple[Symbol, float]] 
    holding_period: int = 0
        
# ESG data.
class ESGData(PythonData):
    _last_update_date:datetime.date = datetime(1,1,1).date()

    @staticmethod
    def get_last_update_date() -> datetime.date:
       return ESGData._last_update_date

    def __init__(self):
        self.tickers = []
    
    def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource:
        return SubscriptionDataSource("data.quantpedia.com/backtesting_data/economic/esg_deciles_data.csv", SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
    
    def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData:
        data = ESGData()
        data.Symbol = config.Symbol
        
        if not line[0].isdigit():
            self.tickers = [x for x in line.split(';')][1:]
            return None
            
        split = line.split(';')
        
        data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)

        index = 1
        for ticker in self.tickers:
            data[ticker] = float(split[index])
            index += 1
            
        data.Value = float(split[1])

        if data.Time.date() > ESGData._last_update_date:
            ESGData._last_update_date = data.Time.date()

        return data
        
# Custom fee model.
class CustomFeeModel(FeeModel):
    def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
        fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
        return OrderFee(CashAmount(fee, "USD"))