Datasets
India Equity
Create Subscriptions
Follow these steps to subscribe to an India Equity security:
- Load the required assembly files and data types.
- Create a
QuantBook
. - Call the
AddEquity
method with a ticker and then save a reference to the India EquitySymbol
.
#load "../Initialize.csx" #load "../QuantConnect.csx" using QuantConnect; using QuantConnect.Data; using QuantConnect.Algorithm; using QuantConnect.Research;
var qb = new QuantBook();
qb = QuantBook()
var icicibank = qb.AddEquity("ICICIBANK", Resolution.Minute, Market.India).Symbol; var yesbank = qb.AddEquity("YESBANK", Resolution.Minute, Market.India).Symbol;
icicibank = qb.AddEquity("ICICIBANK", Resolution.Minute, Market.India).Symbol yesbank = qb.AddEquity("YESBANK", Resolution.Minute, Market.India).Symbol
To view the supported assets in the India Equities dataset, see Supported Assets.
Get Historical Data
You need a subscription before you can request historical data for a security. On the time dimension, you can request an amount of historical data based on a trailing number of bars, a trailing period of time, or a defined period of time. On the security dimension, you can request historical data for a single India Equity, a subset of the India Equities you created subscriptions for in your notebook, or all of the India Equities in your notebook.
Trailing Number of Bars
To get historical data for a number of trailing bars, call the History
method with the Symbol
object(s) and an integer.
// Slice objects var singleHistorySlice = qb.History(icicibank, 10); var subsetHistorySlice = qb.History(new[] {icicibank, yesbank}, 10); var allHistorySlice = qb.History(10); // TradeBar objects var singleHistoryTradeBars = qb.History<TradeBar>(icicibank, 10); var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {icicibank, yesbank}, 10); var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, 10);
# DataFrame of trade data single_history_df = qb.History(icicibank, 10) subset_history_df = qb.History([icicibank, yesbank], 10) all_history_df = qb.History(qb.Securities.Keys, 10) # Slice objects all_history_slice = qb.History(10) # TradeBar objects single_history_trade_bars = qb.History[TradeBar](icicibank, 10) subset_history_trade_bars = qb.History[TradeBar]([icicibank, yesbank], 10) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, 10)
The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.
Trailing Period of Time
To get historical data for a trailing period of time, call the History
method with the Symbol
object(s) and a TimeSpan
timedelta
.
// Slice objects var singleHistorySlice = qb.History(icicibank, TimeSpan.FromDays(3)); var subsetHistorySlice = qb.History(new[] {icicibank, yesbank}, TimeSpan.FromDays(3)); var allHistorySlice = qb.History(10); // TradeBar objects var singleHistoryTradeBars = qb.History<TradeBar>(icicibank, TimeSpan.FromDays(3)); var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {icicibank, yesbank}, TimeSpan.FromDays(3)); var allHistoryTradeBars = qb.History<TradeBar>(TimeSpan.FromDays(3));
# DataFrame of trade data single_history_df = qb.History(icicibank, timedelta(days=3)) subset_history_df = qb.History([icicibank, yesbank], timedelta(days=3)) all_history_df = qb.History(qb.Securities.Keys, timedelta(days=3)) # Slice objects all_history_slice = qb.History(timedelta(days=3)) # TradeBar objects single_history_trade_bars = qb.History[TradeBar](icicibank, timedelta(days=3)) subset_history_trade_bars = qb.History[TradeBar]([icicibank, yesbank], timedelta(days=3)) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, timedelta(days=3))
The preceding calls return the most recent bars, excluding periods of time when the exchange was closed.
Defined Period of Time
To get historical data for a specific period of time, call the History
method with the Symbol
object(s), a start DateTime
datetime
, and an end DateTime
datetime
. The start and end times you provide are based in the notebook time zone.
var startTime = new DateTime(2021, 1, 1); var endTime = new DateTime(2021, 2, 1); // Slice objects var singleHistorySlice = qb.History(icicibank, startTime, endTime); var subsetHistorySlice = qb.History(new[] {icicibank, yesbank}, startTime, endTime); var allHistorySlice = qb.History(qb.Securities.Keys, startTime, endTime); // TradeBar objects var singleHistoryTradeBars = qb.History<TradeBar>(icicibank, startTime, endTime); var subsetHistoryTradeBars = qb.History<TradeBar>(new[] {icicibank, yesbank}, startTime, endTime); var allHistoryTradeBars = qb.History<TradeBar>(qb.Securities.Keys, startTime, endTime);
start_time = datetime(2021, 1, 1) end_time = datetime(2021, 2, 1) # DataFrame of trade data single_history_df = qb.History(icicibank, start_time, end_time) subset_history_df = qb.History([icicibank, yesbank], start_time, end_time) all_history_df = qb.History(qb.Securities.Keys, start_time, end_time) # TradeBar objects single_history_trade_bars = qb.History[TradeBar](icicibank, start_time, end_time) subset_history_trade_bars = qb.History[TradeBar]([icicibank, yesbank], start_time, end_time) all_history_trade_bars = qb.History[TradeBar](qb.Securities.Keys, start_time, end_time)
The preceding calls return the bars that have a timestamp within the defined period of time.
Data Normalization
The data normalization mode defines how historical data is adjusted for corporate actions. By default, LEAN adjusts US Equity data for splits and dividends to produce a smooth price curve, but the following data normalization modes are available:
We use the entire split and dividend history to adjust historical prices. This process ensures you get the same adjusted prices,
regardless of the QuantBook
time.
To set the data normalization mode for a security, pass a dataNormalizationMode
argument to the AddEquity
method.
var icicibank = qb.AddEquity("ICICIBANK", dataNormalizationMode: DataNormalizationMode.Raw).Symbol;
icicibank = qb.AddEquity("ICICIBANK", dataNormalizationMode=DataNormalizationMode.Raw).Symbol
When you request historical data, the History
method uses the data normalization of your security subscription. To get historical data with a different data normalization, pass a dataNormalizationMode
argument to the History
method.
var history = qb.History(qb.Securities.Keys, qb.Time-TimeSpan.FromDays(10), qb.Time, dataNormalizationMode: DataNormalizationMode.SplitAdjusted);
history = qb.History(qb.Securities.Keys, qb.Time-timedelta(days=10), qb.Time, dataNormalizationMode=DataNormalizationMode.SplitAdjusted)
Wrangle Data
You need some historical data to perform wrangling operations. The process to manipulate the historical data depends on its data type. To display pandas
objects, run a cell in a notebook with the pandas
object as the last line. To display other data formats, call the print
method.
You need some historical data to perform wrangling operations. Use LINQ to wrangle the data and then call the Console.WriteLine
method in a Jupyter Notebook to display the data. The process to manipulate the historical data depends on its data type.
DataFrame Objects
If the History
method returns a DataFrame
, the first level of the DataFrame
index is the encoded India Equity Symbol and the second level is the EndTime
of the data sample. The columns of the DataFrame
are the data properties.

To select the historical data of a single India Equity, index the loc
property of the DataFrame
with the India Equity Symbol
.
all_history_df.loc[icicibank] # or all_history_df.loc['ICICIBANK']

To select a column of the DataFrame
, index it with the column name.
all_history_df.loc[icicibank]['close']

If you request historical data for multiple India Equities, you can transform the DataFrame
so that it's a time series of close values for all of the India Equities. To transform the DataFrame
, select the column you want to display for each India Equity and then call the unstack method.
all_history_df['close'].unstack(level=0)
The DataFrame
is transformed so that the column indices are the Symbol
of each India Equity and each row contains the close value.

You may construct a Microsoft.Data.Analysis.DataFrame
object from the historical data for efficient vectorized data wrangling.
var columns = new DataFrameColumn[] { new PrimitiveDataFrameColumn("Time", history.Select(x => x[icicibank].EndTime)), new DecimalDataFrameColumn("ICICIBANK Open", history.Select(x => x[icicibank].Open)), new DecimalDataFrameColumn("ICICIBANK High", history.Select(x => x[icicibank].High)), new DecimalDataFrameColumn("ICICIBANK Low", history.Select(x => x[icicibank].Low)), new DecimalDataFrameColumn("ICICIBANK Close", history.Select(x => x[icicibank].Close)) }; var df = new DataFrame(columns); df
The below displayed a formatted dataframe with reference from SWHarden.

To select a particular column, specifies it like a dictionary key.
df["ICICIBANK close"]

Slice Objects
If the History
method returns Slice
objects, iterate through the Slice
objects to get each one. The Slice
objects may not have data for all of your India Equity subscriptions. To avoid issues, check if the Slice
contains data for your India Equity before you index it with the India Equity Symbol
.
foreach (var slice in allHistorySlice) { if (slice.Bars.ContainsKey(icicibank)) { var tradeBar = slice.Bars[icicibank]; } }
for slice in all_history_slice: if slice.Bars.ContainsKey(icicibank): trade_bar = slice.Bars[icicibank]
You can also iterate through each TradeBar
in the Slice
.
foreach (var slice in allHistorySlice) { foreach (var kvp in slice.Bars) { var symbol = kvp.Key; var tradeBar = kvp.Value; } }
for slice in all_history_slice: for kvp in slice.Bars: symbol = kvp.Key trade_bar = kvp.Value
You can also use LINQ to select each TradeBar
in the Slice
for a given Symbol
.
var tradeBars = allHistorySlice.Where(slice => slice.Bars.ContainsKey(icicibank)).Select(slice => slice.Bars[icicibank]);
TradeBar Objects
If the History
method returns TradeBar
objects, iterate through the TradeBar
objects to get each one.
foreach (var tradeBar in singleHistoryTradeBars) { Console.WriteLine(tradeBar); }
for trade_bar in single_history_trade_bars: print(trade_bar)
If the History
method returns TradeBars
, iterate through the TradeBars
to get the TradeBar
of each India Equity. The TradeBars
may not have data for all of your India Equity subscriptions. To avoid issues, check if the TradeBars
object contains data for your security before you index it with the India Equity Symbol
.
foreach (var tradeBars in allHistoryTradeBars) { if (tradeBars.ContainsKey(icicibank)) { var tradeBar = tradeBars[icicibank]; } }
for trade_bars in all_history_trade_bars: if trade_bars.ContainsKey(icicibank): trade_bar = trade_bars[icicibank]
You can also iterate through each of the TradeBars
.
foreach (var tradeBars in allHistoryTradeBars) { foreach (var kvp in tradeBars) { var symbol = kvp.Key; var tradeBar = kvp.Value; } }
for trade_bars in all_history_trade_bars: for kvp in trade_bars: symbol = kvp.Key trade_bar = kvp.Value
Plot Data
You need some historical Equity data to produce plots. You can use many of the supported plotting librariesPlot.NET
package to visualize data in various formats. For example, you can plot candlestick and line charts.
Candlestick Chart
Follow these steps to plot candlestick charts:
- Get some historical data.
- Import the
plotly
Plotly.NET
library. - Create a
Candlestick
chart. - Create a
Layout
. - Create the
Figure
. - Assign the
Layout
to the chart. - Show the plot.
history = qb.History(icicibank, datetime(2021, 11, 23), datetime(2021, 12, 8), Resolution.Daily).loc[icicibank]
var history = qb.History<TradeBar>(icicibank, new DateTime(2021, 11, 23), new DateTime(2021, 12, 8), Resolution.Daily);
import plotly.graph_objects as go
#r "../Plotly.NET.dll" using Plotly.NET; using Plotly.NET.LayoutObjects;
candlestick = go.Candlestick(x=history.index, open=history['open'], high=history['high'], low=history['low'], close=history['close'])
var chart = Chart2D.Chart.Candlestick<decimal, decimal, decimal, decimal, DateTime, string>( history.Select(x => x.Open), history.Select(x => x.High), history.Select(x => x.Low), history.Select(x => x.Close), history.Select(x => x.EndTime) );
layout = go.Layout(title=go.layout.Title(text='ICICIBANK OHLC'), xaxis_title='Date', yaxis_title='Price', xaxis_rangeslider_visible=False)
LinearAxis xAxis = new LinearAxis(); xAxis.SetValue("title", "Time"); LinearAxis yAxis = new LinearAxis(); yAxis.SetValue("title", "Price ($)"); Title title = Title.init("ICICIBANK Price"); Layout layout = new Layout(); layout.SetValue("xaxis", xAxis); layout.SetValue("yaxis", yAxis); layout.SetValue("title", title);
fig = go.Figure(data=[candlestick], layout=layout)
chart.WithLayout(layout);
fig.show()
HTML(GenericChart.toChartHTML(chart))
Candlestick charts display the open, high, low, and close prices of the security.


Line Chart
Follow these steps to plot line charts using built-in methodsPlotly.NET
package:
- Get some historical data.
- Select the data to plot.
- Call the
plot
method on thepandas
object. - Create a
Line
chart. - Create a
Layout
. - Assign the
Layout
to the chart. - Show the plot.
history = qb.History([icicibank, yesbank], datetime(2021, 11, 23), datetime(2021, 12, 8), Resolution.Daily)
var history = qb.History<TradeBar>(icicibank, new DateTime(2021, 11, 23), new DateTime(2021, 12, 8), Resolution.Daily);
volume = history['volume'].unstack(level=0)
volume.plot(title="Volume", figsize=(15, 10))
var chart = Chart2D.Chart.Line<DateTime, decimal, string>( icicibank.Select(x => x.EndTime), icicibank.Select(x => x.Volume) );
LinearAxis xAxis = new LinearAxis(); xAxis.SetValue("title", "Time"); LinearAxis yAxis = new LinearAxis(); yAxis.SetValue("title", "Volume"); Title title = Title.init("ICICIBANK Volume"); Layout layout = new Layout(); layout.SetValue("xaxis", xAxis); layout.SetValue("yaxis", yAxis); layout.SetValue("title", title);
chart.WithLayout(layout);
plt.show()
HTML(GenericChart.toChartHTML(chart))
Line charts display the value of the property you selected in a time series.


Common Errors
Some factor files have INF split values, which indicate that the stock has so many splits that prices can't be calculated with correct numerical precision. To allow history requests with these symbols, we need to move the starting date forward when reading the data. If there are numerical precision errors in the factor files for a security in your history request, LEAN throws the following error: