Option Strategies
Strangle
Introduction
Long Strangle is an Options trading strategy that consists of simultaneously buying an OTM put and an OTM call, where both contracts have the same underlying asset and expiration date. This strategy aims to profit from volatile movements in the underlying stock, either positive or negative.
Compared to a long straddle, the net debit of a long strangle is lower since OTM Options are cheaper. Additionally, the losing range of a long straddle is wider and the strike spread is wider.
Implementation
Follow these steps to implement the long strangle strategy:
- In the
Initialize
method, set the start date, end date, cash, and Option universe. - In the
OnData
method, select the expiration date and strike prices of the contracts in the strategy legs. - In the
OnData
method, call theOptionStrategies.Strangle
method and then submit the order.
private Symbol _symbol; public override void Initialize() { SetStartDate(2017, 4, 1); SetEndDate(2017, 4, 30); SetCash(100000); var option = AddOption("GOOG", Resolution.Minute); _symbol = option.Symbol; option.SetFilter(-5, 5, TimeSpan.FromDays(0), TimeSpan.FromDays(30)); }
def Initialize(self) -> None: self.SetStartDate(2017, 4, 1) self.SetEndDate(2017, 4, 30) self.SetCash(100000) option = self.AddOption("GOOG", Resolution.Minute) self.symbol = option.Symbol option.SetFilter(-5, 5, timedelta(0), timedelta(30))
public override void OnData(Slice slice) { if (Portfolio.Invested) return; // Get the OptionChain var chain = slice.OptionChains.get(_symbol, null); if (chain == null || chain.Count() == 0) return; // Select an expiration date var expiry = chain.OrderBy(contract => contract.Expiry).Last().Expiry; // Select the OTM call strike var callStrikes = chain.Where(contract => contract.Expiry == expiry && contract.Right == OptionRight.Call && contract.Strike > chain.Underlying.Price) .Select(contract => contract.Strike); if (callStrikes.Count() == 0) return; var callStrike = callStrikes.Min(); // Select the OTM put strike var putStrikes = chain.Where(contract => contract.Expiry == expiry && contract.Right == OptionRight.Put && contract.Strike < chain.Underlying.Price) .Select(contract => contract.Strike); if (putStrikes.Count() == 0) return; var putStrike = putStrikes.Max(); }
def OnData(self, slice: Slice) -> None: if self.Portfolio.Invested: return # Get the OptionChain chain = slice.OptionChains.get(self.symbol, None) if not chain: return # Select an expiration date expiry = sorted(chain, key=lambda contract: contract.Expiry, reverse=True)[0].Expiry # Select the OTM call strike strikes = [contract.Strike for contract in chain if contract.Expiry == expiry] call_strikes = [contract.Strike for contract in chain if contract.Expiry == expiry and contract.Right == OptionRight.Call and contract.Strike > chain.Underlying.Price] if len(call_strikes) == 0: return call_strike = min(call_strikes) # Select the OTM put strike put_strikes = [contract.Strike for contract in chain if contract.Expiry == expiry and contract.Right == OptionRight.Put and contract.Strike < chain.Underlying.Price] if len(put_strikes) == 0: return put_strike = max(put_strikes)
var optionStrategy = OptionStrategies.Strangle(_symbol, callStrike, putStrike, expiry); Buy(optionStrategy, 1);
option_strategy = OptionStrategies.Strangle(self.symbol, call_strike, put_strike, expiry) self.Buy(option_strategy, 1)
Option strategies synchronously execute by default. To asynchronously execute Option strategies, set the asynchronous
argument to False
false
. You can also provide a tag and order properties to the
Buy
methods.
Buy(optionStrategy, quantity, asynchronous, tag, orderProperties);
self.Buy(option_strategy, quantity, asynchronous, tag, order_properties)
Strategy Payoff
The payoff of the strategy is
$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{C})^{+}\\ P^{OTM}_T & = & (K^{P} - S_T)^{+}\\ P_T & = & (C^{OTM}_T + P^{OTM}_T - C^{OTM}_0 - P^{OTM}_0)\times m - fee \end{array} $$ $$ \begin{array}{rcll} \textrm{where} & C^{OTM}_T & = & \textrm{OTM call value at time T}\\ & P^{OTM}_T & = & \textrm{OTM put value at time T}\\ & S_T & = & \textrm{Underlying asset price at time T}\\ & K^{C} & = & \textrm{OTM call strike price}\\ & K^{P} & = & \textrm{OTM put strike price}\\ & P_T & = & \textrm{Payout total at time T}\\ & C^{OTM}_0 & = & \textrm{OTM call value at position opening (debit paid)}\\ & P^{OTM}_0 & = & \textrm{OTM put value at position opening (debit paid)}\\ & m & = & \textrm{Contract multiplier}\\ & T & = & \textrm{Time of expiration} \end{array} $$The following chart shows the payoff at expiration:

The maximum profit is unlimited if the underlying price rises to infinity at expiration.
The maximum loss is the net debit paid, $C^{OTM}_0 + P^{OTM}_0$. It occurs when the underlying price at expiration is the same as when you opened the trade. In this case, both Options expire worthless.
Example
The following table shows the price details of the assets in the algorithm at Option expiration (2017-04-22):
Asset | Price ($) | Strike ($) |
---|---|---|
Call | 8.80 | 835.00 |
Put | 9.50 | 832.50 |
Underlying Equity at expiration | 843.19 | - |
Therefore, the payoff is
$$ \begin{array}{rcll} C^{OTM}_T & = & (S_T - K^{C})^{+}\\ & = & (843.19-835.00)^{+}\\ & = & 8.19\\ P^{OTM}_T & = & (K^{P} - S_T)^{+}\\ & = & (832.50-843.19)^{+}\\ & = & 0\\ P_T & = & (C^{OTM}_T + P^{OTM}_T - C^{OTM}_0 - P^{OTM}_0)\times m - fee\\ & = & (8.19+0-8.80-9.50)\times100-1.00\times2\\ & = & -1013 \end{array} $$So, the strategy losses $1,013.
The following algorithm implements a long strangle Option strategy: