| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports
from AlgorithmImports import *
import time
# endregion
class FetchTopGappers(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 5, 11) # Set Start Date
self.SetEndDate(2021, 5, 11)
self.SetCash(100000) # Set Strategy Cash
self.tanh = self.Symbol("TANH VZ4JMWEY6VS5")
self.tbltu = self.Symbol("TBLTU WYKN02HPCNS5")
self.AddEquity("SPY", resolution=Resolution.Minute, extendedMarketHours=True)
# Add universe
self.UniverseSettings.Resolution = Resolution.Minute
self.UniverseSettings.ExtendedMarketHours = True
self.UniverseSettings.FillForward = True
self.AddUniverse(self.CoarseUniverseSelection)
self.AddUniverseSelection(ScheduledUniverseSelectionModel(
self.DateRules.EveryDay("SPY"),
self.TimeRules.AfterMarketOpen("SPY", -5),
self.ScheduledSymbolSelect))
def CoarseUniverseSelection(self, coarse):
for c in coarse:
if c.Symbol in [self.tanh, self.tbltu]:
self.Debug(f"{self.Time} - {c.Symbol} coarse Price: {c.Price} // coarse adjusted price: {c.AdjustedPrice}")
return [self.tanh, self.tbltu]
def ScheduledSymbolSelect(self, date):
history = self.History(
tickers=[self.tanh, self.tbltu],
start=self.Time - timedelta(minutes=1),
end=self.Time,
resolution=Resolution.Minute,
fillForward=True,
extendedMarket=True,
dataNormalizationMode=DataNormalizationMode.Adjusted,
)
self.Debug(f"Minute data (adjusted): \n{history.to_string()}")
history = self.History(
tickers=[self.tanh, self.tbltu],
start=self.Time - timedelta(minutes=1),
end=self.Time,
resolution=Resolution.Minute,
fillForward=True,
extendedMarket=True,
dataNormalizationMode=DataNormalizationMode.Raw,
)
self.Debug(f"Minute data (raw): \n{history.to_string()}")
history = self.History(
tickers=[self.tanh, self.tbltu],
start=self.Time - timedelta(days=1),
end=self.Time,
resolution=Resolution.Daily,
fillForward=True,
extendedMarket=True,
dataNormalizationMode=DataNormalizationMode.Adjusted,
)
self.Debug(f"Daily data (adjusted): \n{history.to_string()}")
history = self.History(
tickers=[self.tanh, self.tbltu],
start=self.Time - timedelta(days=1),
end=self.Time,
resolution=Resolution.Daily,
fillForward=True,
extendedMarket=True,
dataNormalizationMode=DataNormalizationMode.Raw,
)
self.Debug(f"Daily data (raw): \n{history.to_string()}")
return []