| Overall Statistics |
|
Total Orders 1153 Average Win 1.41% Average Loss -0.33% Compounding Annual Return 1111.463% Drawdown 36.900% Expectancy 1.357 Start Equity 3000 End Equity 25824.54 Net Profit 760.818% Sharpe Ratio 7.899 Sortino Ratio 16.747 Probabilistic Sharpe Ratio 98.200% Loss Rate 56% Win Rate 44% Profit-Loss Ratio 4.33 Alpha 0 Beta 0 Annual Standard Deviation 0.839 Annual Variance 0.703 Information Ratio 7.965 Tracking Error 0.839 Treynor Ratio 0 Total Fees €3544.47 Estimated Strategy Capacity €23000.00 Lowest Capacity Asset AWX RBSIMWGA33VP Portfolio Turnover 25.96% |
# region imports
from AlgorithmImports import *
# endregion
def get_r_o_a_score(fine):
'''Get the Profitability - Return of Asset sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Profitability - Return of Asset sub-score'''
# Nearest ROA as current year data
roa = fine.operation_ratios.ROA.three_months
# 1 score if ROA datum exists and positive, else 0
score = 1 if roa and roa > 0 else 0
return score
def get_operating_cash_flow_score(fine):
'''Get the Profitability - Operating Cash Flow sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Profitability - Operating Cash Flow sub-score'''
# Nearest Operating Cash Flow as current year data
operating_cashflow = fine.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months
# 1 score if operating cash flow datum exists and positive, else 0
score = 1 if operating_cashflow and operating_cashflow > 0 else 0
return score
def get_r_o_a_change_score(fine):
'''Get the Profitability - Change in Return of Assets sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Profitability - Change in Return of Assets sub-score'''
# if current or previous year's ROA data does not exist, return 0 score
roa = fine.operation_ratios.ROA
if not roa.three_months or not roa.one_year:
return 0
# 1 score if change in ROA positive, else 0 score
score = 1 if roa.three_months > roa.one_year else 0
return score
def get_accruals_score(fine):
'''Get the Profitability - Accruals sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Profitability - Accruals sub-score'''
# Nearest Operating Cash Flow, Total Assets, ROA as current year data
operating_cashflow = fine.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months
total_assets = fine.financial_statements.balance_sheet.total_assets.three_months
roa = fine.operation_ratios.ROA.three_months
# 1 score if operating cash flow, total assets and ROA exists, and operating cash flow / total assets > ROA, else 0
score = 1 if operating_cashflow and total_assets and roa and operating_cashflow / total_assets > roa else 0
return score
def get_leverage_score(fine):
'''Get the Leverage, Liquidity and Source of Funds - Change in Leverage sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Leverage, Liquidity and Source of Funds - Change in Leverage sub-score'''
# if current or previous year's long term debt to equity ratio data does not exist, return 0 score
long_term_debt_ratio = fine.operation_ratios.long_term_debt_equity_ratio
if not long_term_debt_ratio.three_months or not long_term_debt_ratio.one_year:
return 0
# 1 score if long term debt ratio is lower in the current year, else 0 score
score = 1 if long_term_debt_ratio.three_months < long_term_debt_ratio.one_year else 0
return score
def get_liquidity_score(fine):
'''Get the Leverage, Liquidity and Source of Funds - Change in Liquidity sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Leverage, Liquidity and Source of Funds - Change in Liquidity sub-score'''
# if current or previous year's current ratio data does not exist, return 0 score
current_ratio = fine.operation_ratios.current_ratio
if not current_ratio.three_months or not current_ratio.one_year:
return 0
# 1 score if current ratio is higher in the current year, else 0 score
score = 1 if current_ratio.three_months > current_ratio.one_year else 0
return score
def get_share_issued_score(fine):
'''Get the Leverage, Liquidity and Source of Funds - Change in Number of Shares sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Leverage, Liquidity and Source of Funds - Change in Number of Shares sub-score'''
# if current or previous year's issued shares data does not exist, return 0 score
shares_issued = fine.financial_statements.balance_sheet.share_issued
if not shares_issued.three_months or not shares_issued.twelve_months:
return 0
# 1 score if shares issued did not increase in the current year, else 0 score
score = 1 if shares_issued.three_months <= shares_issued.twelve_months else 0
return score
def get_gross_margin_score(fine):
'''Get the Leverage, Liquidity and Source of Funds - Change in Gross Margin sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Leverage, Liquidity and Source of Funds - Change in Gross Margin sub-score'''
# if current or previous year's gross margin data does not exist, return 0 score
gross_margin = fine.operation_ratios.gross_margin
if not gross_margin.three_months or not gross_margin.one_year:
return 0
# 1 score if gross margin is higher in the current year, else 0 score
score = 1 if gross_margin.three_months > gross_margin.one_year else 0
return score
def get_asset_turnover_score(fine):
'''Get the Leverage, Liquidity and Source of Funds - Change in Asset Turnover Ratio sub-score of Piotroski F-Score
Arg:
fine: Fine fundamental object of a stock
Return:
Leverage, Liquidity and Source of Funds - Change in Asset Turnover Ratio sub-score'''
# if current or previous year's asset turnover data does not exist, return 0 score
asset_turnover = fine.operation_ratios.assets_turnover
if not asset_turnover.three_months or not asset_turnover.one_year:
return 0
# 1 score if asset turnover is higher in the current year, else 0 score
score = 1 if asset_turnover.three_months > asset_turnover.one_year else 0
return score# region imports
from AlgorithmImports import *
from security_initializer import *
from universe import FScoreUniverseSelectionModel, LimitSectorWeightingPortfolioConstructionModel
# endregion
class ValueInvesting(QCAlgorithm):
def initSettings(self):
self.set_account_currency("EUR")
self.InitCash = 3000 # Initial Starting Cash
self.set_start_date(2024, 1, 1)
# self.set_end_date(2023, 4, 1)
self.fPVP = 0.1 # FreePortfolioValuePercentage
self.risk = 0.9 # set maximum Risk for whole portfolio
self.rebalancefrequency = 2 # Rebalance Portfolio every X Days
self.maxPercentPerSector = 1 # limit exposure per sector
self.leverage = 1.9
self.maxPrice = self.get_parameter("maxPrice",3) # maximum price for Stock in Universe Selector
self.minPrice = self.get_parameter("minPrice",1)
self.maxStocks = 10000 # how many different stocks can be held at any time
self.fscore_threshold = self.get_parameter("fscore_threshold", 7) # set the minimum F-Score a Stock must have
def initialize(self):
self.initSettings()
self.StartCash = self.InitCash
self.SetCash(self.InitCash)
### Parameters ###
# The Piotroski F-Score threshold we would like to invest into stocks with F-Score >= of that
fscore_threshold = self.fscore_threshold
### Reality Modeling ###
# Interactive Broker Brokerage fees and margin
self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN)
# Custom security initializer
self.set_security_initializer(CustomSecurityInitializer(self.brokerage_model, FuncSecuritySeeder(self.get_last_known_prices), DataNormalizationMode.Raw))
### Universe Settings ###
self.universe_settings.resolution = Resolution.Second
###
#self.universe_settings.leverage = 8
# Our universe is selected by Piotroski's F-Score and the max price which a stock can be and how much stocks should be maximum in Portfolio
self.add_universe_selection(FScoreUniverseSelectionModel(self, fscore_threshold, self.maxPrice, self.minPrice, self.maxStocks))
# Assume we want to just buy and hold the selected stocks, rebalance daily
self.add_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(days=int(self.rebalancefrequency))))
# Avoid overconcentration of risk in related stocks in the same sector, we invest the same size in every sector
self.set_portfolio_construction(LimitSectorWeightingPortfolioConstructionModel(timedelta(days=self.rebalancefrequency),self.maxPercentPerSector, self.leverage))
# set Risk Management
self.add_risk_management(MaximumDrawdownPercentPortfolio(self.risk))
# set minimum Order Margin
self.settings.SetMinimumOrderMargin=0.1
# set Free Portfolio Value in Percent (Money which shouldn't be used)
#self.Settings.FreePortfolioValuePercentage = self.fPVP
# set Execution Model
self.set_execution(SpreadExecutionModel(0.009))
# region imports
from AlgorithmImports import *
# endregion
class CustomSecurityInitializer(BrokerageModelSecurityInitializer):
'''Our custom initializer that will set the data normalization mode.
We sub-class the BrokerageModelSecurityInitializer so we can also
take advantage of the default model/leverage setting behaviors'''
def __init__(self, brokerage_model, security_seeder, data_normalization_mode):
'''Initializes a new instance of the CustomSecurityInitializer class with the specified normalization mode
brokerage_model -- The brokerage model used to get fill/fee/slippage/settlement models
security_seeder -- The security seeder to be used
data_normalization_mode -- The desired data normalization mode'''
self.base = BrokerageModelSecurityInitializer(brokerage_model, security_seeder)
self.data_normalization_mode = data_normalization_mode
def initialize(self, security):
'''Initializes the specified security by setting up the models
security -- The security to be initialized
seed_security -- True to seed the security, false otherwise'''
# first call the default implementation
self.base.initialize(security)
# now apply our data normalization mode
security.set_data_normalization_mode(self.data_normalization_mode)
security.set_slippage_model(VolumeShareSlippageModel())
security.set_buying_power_model(CustomBuyingPowerModel())
#security.set_buying_power_model(SecurityMarginModel(3.8))
security.set_fill_model(ForwardDataOnlyFillModel())
class CustomBuyingPowerModel(BuyingPowerModel):
def get_maximum_order_quantity_for_target_buying_power(self, parameters):
quantity = super().get_maximum_order_quantity_for_target_buying_power(parameters).quantity
return GetMaximumOrderQuantityResult(quantity)
def has_sufficient_buying_power_for_order(self, parameters):
return HasSufficientBuyingPowerForOrderResult(True)
# Let's always return 0 as the maintenance margin so we avoid margin call orders
def get_maintenance_margin(self, parameters):
return MaintenanceMargin(0)
# Override this as well because the base implementation calls GetMaintenanceMargin (overridden)
# because in C# it wouldn't resolve the overridden Python method
def get_reserved_buying_power_for_position(self, parameters):
return parameters.result_in_account_currency(0)
class ForwardDataOnlyFillModel(EquityFillModel):
def fill(self, parameters: FillModelParameters):
order_local_time = Extensions.convert_from_utc(parameters.order.time, parameters.security.exchange.time_zone)
data = parameters.security.cache.get_data[QuoteBar]()
if not data is None and order_local_time <= data.end_time:
return super().fill(parameters)
return Fill([])from AlgorithmImports import *
from f_score import *
import math
from scipy.stats import norm
from datetime import timedelta
class FScoreUniverseSelectionModel(FineFundamentalUniverseSelectionModel):
def __init__(self, algorithm, fscore_threshold, max_price=10000, min_price=1, max_stocks=10000):
super().__init__(self.select_coarse, self.select_fine)
self.algorithm = algorithm
self.fscore_threshold = fscore_threshold
self.max_price = max_price
self.min_price = min_price
self.max_stocks = max_stocks
self.algorithm = algorithm
self.kept_stocks_counter = {}
def select_coarse(self, coarse):
# Nur Aktien mit fundamentalen Daten und Preis > 1
filtered = [x.Symbol for x in coarse if x.HasFundamentalData and x.Price > self.min_price and x.Price <= self.max_price and x.financial_statements.balance_sheet.net_tangible_assets.twelve_months > 0 and x.market_cap > 0]
# filtered = [x.Symbol for x in filtered if x.financial_statements.balance_sheet.net_tangible_assets.twelve_months/x.market_cap >=1]
return filtered
def select_fine(self, fine):
# Wir verwenden ein Dictionary, um den F-Score jeder Aktie zu speichern
f_scores = {}
f_scores_invested = {}
fine = sorted(fine, key=lambda x: x.MarketCap, reverse=True)
for f in fine:
# Berechne den Piotroski F-Score der gegebenen Aktie
if(self.get_piotroski_f_score(f) >= self.fscore_threshold):
f_scores[f.symbol] = self.get_piotroski_f_score(f)
# Filtere Aktien, die den F-Score-Schwellenwert überschreiten
selected_stocks = [symbol for symbol, fscore in f_scores.items()][:self.max_stocks]
return selected_stocks # Rückgabe der Liste mit Optionen
def get_piotroski_f_score(self, fine):
# initial F-Score as 0
fscore = 0
# Add up the sub-scores in different aspects
fscore += get_r_o_a_score(fine)
fscore += get_operating_cash_flow_score(fine)
fscore += get_r_o_a_change_score(fine)
fscore += get_accruals_score(fine)
fscore += get_leverage_score(fine)
fscore += get_liquidity_score(fine)
fscore += get_share_issued_score(fine)
fscore += get_gross_margin_score(fine)
fscore += get_asset_turnover_score(fine)
return fscore
class LimitSectorWeightingPortfolioConstructionModel(EqualWeightingPortfolioConstructionModel):
'''Provides an implementation of IPortfolioConstructionModel that
generates percent targets based on the CompanyReference.industry_template_code.
The target percent holdings of each sector is 1/S where S is the number of sectors and
the target percent holdings of each security is 1/N where N is the number of securities of each sector.
For insights of direction InsightDirection.UP, long targets are returned and for insights of direction
InsightDirection.DOWN, short targets are returned.
It will ignore Insight for symbols that have no CompanyReference.industry_template_code'''
def __init__(self, rebalance = Resolution.DAILY, maxPercent = 1, leverage = 1):
'''Initialize a new instance of InsightWeightingPortfolioConstructionModel
Args:
rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function.
If None will be ignored.
The function returns the next expected rebalance time for a given algorithm UTC DateTime.
The function returns null if unknown, in which case the function will be called again in the
next loop. Returning current time will trigger rebalance.'''
super().__init__(rebalance)
self.sector_code_by_symbol = dict()
self.maxPercent = maxPercent
self.leverage = leverage
def should_create_target_for_insight(self, insight):
'''Method that will determine if the portfolio construction model should create a
target for this insight
Args:
insight: The insight to create a target for'''
return insight.symbol in self.sector_code_by_symbol
def determine_target_percent(self, active_insights):
'''Will determine the target percent for each insight
Args:
active_insights: The active insights to generate a target for'''
result = dict()
insight_by_sector_code = dict()
for insight in active_insights:
if insight.direction == InsightDirection.FLAT:
result[insight] = 0
continue
sector_code = self.sector_code_by_symbol.get(insight.symbol)
insights = insight_by_sector_code.pop(sector_code, list())
insights.append(insight)
insight_by_sector_code[sector_code] = insights
# give equal weighting to each sector
sector_percent = 0 if len(insight_by_sector_code) == 0 else self.leverage / len(insight_by_sector_code) if self.leverage / len(insight_by_sector_code) < self.leverage*self.maxPercent else self.leverage*self.maxPercent
for _, insights in insight_by_sector_code.items():
# give equal weighting to each security
count = len(insights)
percent = 0 if count == 0 else sector_percent / count
for insight in insights:
result[insight] = insight.direction * percent
return result
def on_securities_changed(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
for security in changes.removed_securities:
# Removes the symbol from the self.sector_code_by_symbol dictionary
# since we cannot emit PortfolioTarget for removed securities
self.sector_code_by_symbol.pop(security.symbol, None)
for security in changes.added_securities:
sector_code = self.get_sector_code(security)
if sector_code:
self.sector_code_by_symbol[security.symbol] = sector_code
super().on_securities_changed(algorithm, changes)
def get_sector_code(self, security):
'''Gets the sector code
Args:
security: The security to create a sector code for
Returns:
The value of the sector code for the security
Remarks:
Other sectors can be defined using AssetClassification'''
fundamentals = security.fundamentals
company_reference = security.fundamentals.company_reference if fundamentals else None
return company_reference.industry_template_code if company_reference else None