| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from System import *
from QuantConnect import *
from QuantConnect.Orders import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Risk import *
from QuantConnect.Algorithm.Framework.Selection import *
from HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel
from HistoricalReturnsAlphaModel_copy import HistoricalReturnsAlphaModel_copy
from MeanVarianceOptimizationPortfolioConstructionModel import MeanVarianceOptimizationPortfolioConstructionModel
import numpy as np
import pandas as pd
from scipy.optimize import minimize
class MeanVarianceOptimizationAlgorithm(QCAlgorithmFramework):
'''Mean Variance Optimization Algorithm.'''
def Initialize(self):
''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
# Set requested data resolution
self.UniverseSettings.Resolution = Resolution.Minute
self.SetStartDate(2017, 4, 1) #Set Start Date
self.SetEndDate(2018, 4, 9) #Set End Date
self.SetCash(100000) #Set Strategy Cash
tickers = ['IWD', 'MTUM', 'IWN', 'IWM', 'EFA', 'EEM', 'IEF', 'SPY', 'LQD', 'TLT', 'DBC', 'GLD', 'VNQ']
symbols = [ Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in tickers ]
self.minimum_weight = -1
self.maximum_weight = 1
# set algorithm framework models
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
#Alpha #1
self.SetAlpha( HistoricalReturnsAlphaModel(resolution = Resolution.Daily) )
#Alpha #2
self.SetAlpha( HistoricalReturnsAlphaModel_copy(resolution = Resolution.Daily) )
#Composite Alpha
#self.SetAlpha( CompositeAlphaModel([HistoricalReturnsAlphaModel(resolution = Resolution.Daily), HistoricalReturnsAlphaModel_copy(resolution = Resolution.Daily)]) )
self.SetPortfolioConstruction( MeanVarianceOptimizationPortfolioConstructionModel() )
self.SetExecution( NullExecutionModel() )
self.SetRiskManagement( NullRiskManagementModel() )
#def OnOrderEvent(self, orderEvent):
# if orderEvent.Status == OrderStatus.Filled:
# self.Debug(orderEvent.ToString())
def maximum_sharpe_ratio(self, returns):
'''Maximum Sharpe Ratio optimization method'''
# Objective function
fun = lambda weights: -self.sharpe_ratio(returns, weights)
# Constraint #1: The weights can be negative, which means investors can short a security.
constraints = [{'type': 'eq', 'fun': lambda w: np.sum(w) - 1}]
size = returns.columns.size
x0 = np.array(size * [1. / size])
bounds = tuple((self.minimum_weight, self.maximum_weight) for x in range(size))
opt = minimize(fun, # Objective function
x0, # Initial guess
method='SLSQP', # Optimization method: Sequential Least SQuares Programming
bounds = bounds, # Bounds for variables
constraints = constraints) # Constraints definition
weights = pd.Series(opt['x'], index = returns.columns)
return opt, weights
def sharpe_ratio(self, returns, weights):
annual_return = np.dot(np.matrix(returns.mean()), np.matrix(weights).T).item()
annual_volatility = np.sqrt(np.dot(weights.T, np.dot(returns.cov(), weights)))
return annual_return/annual_volatility# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm.Framework.Alphas import *
from datetime import timedelta
class HistoricalReturnsAlphaModel:
'''Uses Historical returns to create insights.'''
def __init__(self, *args, **kwargs):
'''Initializes a new default instance of the HistoricalReturnsAlphaModel class.
Args:
lookback(int): Historical return lookback period
resolution: The resolution of historical data'''
self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1
self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.lookback)
self.symbolDataBySymbol = {}
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.CanEmit:
direction = InsightDirection.Flat
magnitude = symbolData.Return
if magnitude > 0: direction = InsightDirection.Up
if magnitude < 0: direction = InsightDirection.Down
insights.append(Insight.Price(symbol, self.predictionInterval, direction, 0.00001, None))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
if symbolData is not None:
symbolData.RemoveConsolidators(algorithm)
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = algorithm.History(symbols, self.lookback, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
for ticker in tickers:
symbol = SymbolCache.GetSymbol(ticker)
if symbol not in self.symbolDataBySymbol:
symbolData = SymbolData(symbol, self.lookback)
self.symbolDataBySymbol[symbol] = symbolData
symbolData.RegisterIndicators(algorithm, self.resolution)
symbolData.WarmUpIndicators(history.loc[ticker])
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback):
self.Symbol = symbol
self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback)
self.Consolidator = None
self.previous = 0
def RegisterIndicators(self, algorithm, resolution):
self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution)
algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator)
def RemoveConsolidators(self, algorithm):
if self.Consolidator is not None:
algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
def WarmUpIndicators(self, history):
for tuple in history.itertuples():
self.ROC.Update(tuple.Index, tuple.close)
@property
def Return(self):
return float(self.ROC.Current.Value)
@property
def CanEmit(self):
if self.previous == self.ROC.Samples:
return False
self.previous = self.ROC.Samples
return self.ROC.IsReady
def __str__(self, **kwargs):
return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Return)**252 - 1)# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Indicators")
from System import *
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
from QuantConnect.Algorithm.Framework.Portfolio import PortfolioTarget
from datetime import timedelta
import numpy as np
import pandas as pd
from scipy.optimize import minimize
### <summary>
### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory.
### The interval of weights in optimization method can be changed based on the long-short algorithm.
### The default model uses the last three months daily price to calculate the optimal weight
### with the weight range from -1 to 1 and minimize the portfolio variance with a target return of 2%
### </summary>
class MeanVarianceOptimizationPortfolioConstructionModel:
def __init__(self, *args, **kwargs):
"""Initialize the model
Args:
lookback(int): Historical return lookback period
period(int): The time interval of history price to calculate the weight
resolution: The resolution of the history price
minimum_weight(float): The lower bounds on portfolio weights
maximum_weight(float): The upper bounds on portfolio weights
target_return(float): The target portfolio return
optimization_method(method): Method used to compute the portfolio weights"""
self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1
self.period = kwargs['period'] if 'period' in kwargs else 63
self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily
self.minimum_weight = kwargs['minimum_weight'] if 'minimum_weight' in kwargs else -1
self.maximum_weight = kwargs['maximum_weight'] if 'maximum_weight' in kwargs else 1
self.target_return = kwargs['target_return'] if 'target_return' is kwargs else 0.02
self.optimization_method = kwargs['optimization_method'] if 'optimization_method' in kwargs else self.minimum_variance
self.symbolDataBySymbol = {}
self.pendingRemoval = []
def CreateTargets(self, algorithm, insights):
"""
Create portfolio targets from the specified insights
Args:
algorithm: The algorithm instance
insights: The insights to create portoflio targets from
Returns:
An enumerable of portoflio targets to be sent to the execution model
"""
for symbol in self.pendingRemoval:
yield PortfolioTarget.Percent(algorithm, symbol, 0)
self.pendingRemoval.clear()
symbols = [insight.Symbol for insight in insights]
if len(symbols) == 0:
return []
for insight in insights:
symbolData = self.symbolDataBySymbol.get(insight.Symbol)
if insight.Magnitude is None:
algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.'))
symbolData.Add(algorithm.Time, insight.Magnitude)
# Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame
returns = { str(symbol) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols }
returns = pd.DataFrame(returns)
# The optimization method processes the data frame
opt, weights = self.optimization_method(returns)
algorithm.Log('{}:\n\r{}'.format(algorithm.Time, weights))
# Create portfolio targets from the specified insights
for insight in insights:
weight = weights[str(insight.Symbol)]
yield PortfolioTarget.Percent(algorithm, insight.Symbol, weight)
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
for removed in changes.RemovedSecurities:
self.pendingRemoval.append(removed.Symbol)
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
if symbolData is not None:
symbolData.RemoveConsolidators(algorithm)
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = algorithm.History(symbols, self.lookback * self.period, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
for ticker in tickers:
symbol = SymbolCache.GetSymbol(ticker)
if symbol not in self.symbolDataBySymbol:
symbolData = SymbolData(symbol, self.lookback, self.period)
self.symbolDataBySymbol[symbol] = symbolData
symbolData.RegisterIndicators(algorithm, self.resolution)
symbolData.WarmUpIndicators(history.loc[ticker])
def minimum_variance(self, returns):
'''Minimum variance optimization method'''
# Objective function
fun = lambda weights: np.dot(weights.T, np.dot(returns.cov(), weights))
# Constraint #1: The weights can be negative, which means investors can short a security.
constraints = [{'type': 'eq', 'fun': lambda w: np.sum(w) - 1}]
# Constraint #2: Portfolio targets a given return
constraints.append({'type': 'eq', 'fun': lambda weights: np.dot(np.matrix(returns.mean()), np.matrix(weights).T).item() - self.target_return})
size = returns.columns.size
x0 = np.array(size * [1. / size])
bounds = tuple((self.minimum_weight, self.maximum_weight) for x in range(size))
opt = minimize(fun, # Objective function
x0, # Initial guess
method='SLSQP', # Optimization method: Sequential Least SQuares Programming
bounds = bounds, # Bounds for variables
constraints = constraints) # Constraints definition
return opt, pd.Series(opt['x'], index = returns.columns)
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback, period):
self.Symbol = symbol
self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback)
self.ROC.Updated += self.OnRateOfChangeUpdated
self.Window = RollingWindow[IndicatorDataPoint](period)
self.Consolidator = None
def RegisterIndicators(self, algorithm, resolution):
self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution)
algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator)
def RemoveConsolidators(self, algorithm):
if self.Consolidator is not None:
algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
def WarmUpIndicators(self, history):
for tuple in history.itertuples():
self.ROC.Update(tuple.Index, tuple.close)
def OnRateOfChangeUpdated(self, roc, value):
if roc.IsReady:
self.Window.Add(value)
def Add(self, time, value):
item = IndicatorDataPoint(self.Symbol, time, value)
self.Window.Add(item)
@property
def Return(self):
data = [(1 + float(x.Value))**252 - 1 for x in self.Window]
index = [x.EndTime for x in self.Window]
return pd.Series(data, index=index)
@property
def IsReady(self):
return self.Window.IsReady
def __str__(self, **kwargs):
return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Window[0])**252 - 1)# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm.Framework.Alphas import *
from datetime import timedelta
class HistoricalReturnsAlphaModel_copy:
'''Uses Historical returns to create insights.'''
def __init__(self, *args, **kwargs):
'''Initializes a new default instance of the HistoricalReturnsAlphaModel class.
Args:
lookback(int): Historical return lookback period
resolution: The resolution of historical data'''
self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1
self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.lookback)
self.symbolDataBySymbol = {}
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.CanEmit:
direction = InsightDirection.Flat
magnitude = symbolData.Return
if magnitude > 0: direction = InsightDirection.Up
if magnitude < 0: direction = InsightDirection.Down
insights.append(Insight.Price(symbol, self.predictionInterval, direction, 0.00001, None))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
if symbolData is not None:
symbolData.RemoveConsolidators(algorithm)
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = algorithm.History(symbols, self.lookback, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
for ticker in tickers:
symbol = SymbolCache.GetSymbol(ticker)
if symbol not in self.symbolDataBySymbol:
symbolData = SymbolData(symbol, self.lookback)
self.symbolDataBySymbol[symbol] = symbolData
symbolData.RegisterIndicators(algorithm, self.resolution)
symbolData.WarmUpIndicators(history.loc[ticker])
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback):
self.Symbol = symbol
self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback)
self.Consolidator = None
self.previous = 0
def RegisterIndicators(self, algorithm, resolution):
self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution)
algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator)
def RemoveConsolidators(self, algorithm):
if self.Consolidator is not None:
algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
def WarmUpIndicators(self, history):
for tuple in history.itertuples():
self.ROC.Update(tuple.Index, tuple.close)
@property
def Return(self):
return float(self.ROC.Current.Value)
@property
def CanEmit(self):
if self.previous == self.ROC.Samples:
return False
self.previous = self.ROC.Samples
return self.ROC.IsReady
def __str__(self, **kwargs):
return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Return)**252 - 1)