| Overall Statistics |
|
Total Trades 166 Average Win 3.70% Average Loss -1.27% Compounding Annual Return 18.765% Drawdown 16.100% Expectancy 1.633 Net Profit 416.484% Sharpe Ratio 1.514 Probabilistic Sharpe Ratio 87.579% Loss Rate 33% Win Rate 67% Profit-Loss Ratio 2.93 Alpha 0.168 Beta 0.174 Annual Standard Deviation 0.131 Annual Variance 0.017 Information Ratio 0.121 Tracking Error 0.186 Treynor Ratio 1.141 Total Fees $166.40 Estimated Strategy Capacity $9100000.00 Lowest Capacity Asset IEF SGNKIKYGE9NP |
"""
Based on 'In & Out' strategy by Peter Guenther 10-04-2020
expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, and Thomas Chang.
https://www.quantopian.com/posts/new-strategy-in-and-out
"""
# Import packages
import numpy as np
import pandas as pd
import scipy as sc
class InOut(QCAlgorithm):
def Initialize(self):
self.first_loop = True
self.is_invested = False
self.SetStartDate(2012, 1, 1) # Set Start Date
self.SetCash(10000) # Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
res = Resolution.Hour
# stock selection
self.STKSEL = self.AddEquity('QQQ', res).Symbol
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
self.MRKT = self.AddEquity('SPY', res).Symbol
self.TLT = self.AddEquity('TLT', res).Symbol # Treasury Bond ETF (20 yrs)
self.IEF = self.AddEquity('IEF', res).Symbol # Treasury Bond ETF (7-10 yrs)
# Market and list of signals based on ETFs
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD) - Dolar Index
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # VS silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven (CHF)
self.RICU = self.AddEquity('FXA', res).Symbol # risk currency (AUD)
self.INDU = self.PRDC # vs industrials
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU]
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX]
# 'In' and 'out' holdings incl. weights
# When "In the market" hold the QQQ ETF
self.HLD_IN = {self.STKSEL: 1.0}
# When "Out of the Market", hold treasury bonds
self.HLD_OUT = {self.TLT: .5, self.IEF: .5}
# Initialize variables
## 'In'/'out' indicator
self.be_in = 1
## Day count variables
self.dcount = 0 # count of total days since start
self.outday = 0 # dcount when self.be_in=0
## Flexi wait days
self.WDadjvar = self.INI_WAIT_DAYS
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_out_of_the_market
)
self.Schedule.On(
self.DateRules.WeekEnd(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_in_the_market
)
def rebalance_when_out_of_the_market(self):
if self.first_loop:
self.base_portfolio = self.Portfolio.TotalPortfolioValue
self.base_spy = self.ActiveSecurities[self.MRKT].Price
self.base_qqq = self.ActiveSecurities[self.STKSEL].Price
self.first_loop = False
# Returns sample to detect extreme observations
hist = self.History(
self.SIGNALS + [self.MRKT] + self.FORPAIRS, 252, Resolution.Daily)['close'].unstack(level=0).dropna()
# In the first version, it used the pct_chg of the assets in last 3 months
# hist_shift = hist.rolling(66).apply(lambda x: x[:11].mean())
# To get rid of single noise, it was updated to consider the mean from 55-66 previous readings
hist_shift = hist.apply(lambda x: (x.shift(65) + x.shift(64) + x.shift(63) + x.shift(62) + x.shift(
61) + x.shift(60) + x.shift(59) + x.shift(58) + x.shift(57) + x.shift(56) + x.shift(55)) / 11)
returns_sample = (hist / hist_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
# G_S = Gold vs Silver
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
# U_I = Utilities vs Industrial
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
# C_A = Swiss Franc vs Australian Dollar
returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU])
self.pairlist = ['G_S', 'U_I', 'C_A']
# Extreme observations; statist. significance = 1%
pctl_b = np.nanpercentile(returns_sample, 1, axis=0)
extreme_b = returns_sample.iloc[-1] < pctl_b
# Determine waitdays empirically via safe haven excess returns, 50% decay
self.WDadjvar = int(
max(0.50 * self.WDadjvar,
self.INI_WAIT_DAYS * max(1,
#returns_sample[self.GOLD].iloc[-1] / returns_sample[self.SLVA].iloc[-1],
#returns_sample[self.UTIL].iloc[-1] / returns_sample[self.INDU].iloc[-1],
#returns_sample[self.SHCU].iloc[-1] / returns_sample[self.RICU].iloc[-1]
np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1)
))
)
adjwaitdays = min(60, self.WDadjvar)
# self.Debug('{}'.format(self.WDadjvar))
# Determine whether 'in' or 'out' of the market
# If any return (3 months return) that is being tracked is bellow the 1% percentile should be off market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in = False
self.outday = self.dcount
# if out of the market for adjwaitdays, then go in the market
if self.dcount >= self.outday + adjwaitdays:
self.be_in = True
self.dcount += 1
self.Plot("In Out", "in_market", int(self.be_in))
self.Plot("In Out", "num_out_signals", extreme_b[self.SIGNALS + self.pairlist].sum())
self.Plot("Wait Days", "waitdays", adjwaitdays)
self.Plot("My Control", "SPY", self.ActiveSecurities[self.MRKT].Price/self.base_spy)
self.Plot("My Control", "QQQ", self.ActiveSecurities[self.STKSEL].Price/self.base_qqq)
self.Plot("My Control", "Portfolio", self.Portfolio.TotalPortfolioValue/self.base_portfolio)
def rebalance_when_in_the_market(self):
# Swap to 'in' assets if applicable
if self.be_in and self.is_invested != "in":
# Close 'Out' holdings
for asset, weight in self.HLD_OUT.items():
self.SetHoldings(asset, 0)
for asset, weight in self.HLD_IN.items():
self.SetHoldings(asset, weight)
self.is_invested = "in"
# Swap to 'out' assets if applicable
if not self.be_in and self.is_invested != "out":
# Close 'In' holdings
for asset, weight in self.HLD_IN.items():
self.SetHoldings(asset, 0)
for asset, weight in self.HLD_OUT.items():
self.SetHoldings(asset, weight)
self.is_invested = "out"