| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel
class ResistanceNadionThrustAssembly(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 10, 9) # Set Start Date
self.SetEndDate(2019,1,31)
self.SetCash(100000) # Set Strategy Cash
self.AddAlpha(EmaCrossAlphaModel(50, 200, Resolution.Minute))
self.__numberOfSymbols = 100
self.__numberOfSymbolsFine = 5
self.lastMonth = -1
self.symbols = []
self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction, None, None))
def OnData(self, data):
pass
def OnSecuritiesChanged(self, changes):
self.Log([security.Symbol.Value for security in changes.AddedSecurities])
def CoarseSelectionFunction(self, coarse):
if self.Time.month == self.lastMonth:
return self.symbols
self.lastMonth = self.Time.month
# sort descending by daily dollar volume
self.Log('Refreshing Universe >> ' + str(self.Time))
sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
self.symbols = [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ]
# return the symbol objects of the top entries from our sorted collection
return self.symbols
# sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
def FineSelectionFunction(self, fine):
if self.Time.month == self.lastMonth:
return self.symbols
self.Log('Refreshing Universe >> ' + str(self.Time))
# sort descending by P/E ratio
sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True)
self.symbols = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ]
# take the top entries from our sorted collection
return self.symbols