| Overall Statistics |
|
Total Trades 113 Average Win 1.55% Average Loss -1.92% Compounding Annual Return 1.266% Drawdown 10.900% Expectancy 0.046 Net Profit 3.849% Sharpe Ratio 0.151 Probabilistic Sharpe Ratio 3.881% Loss Rate 42% Win Rate 58% Profit-Loss Ratio 0.81 Alpha 0.013 Beta -0.015 Annual Standard Deviation 0.078 Annual Variance 0.006 Information Ratio -0.397 Tracking Error 0.137 Treynor Ratio -0.78 Total Fees $1319.57 Estimated Strategy Capacity $3700000.00 Lowest Capacity Asset TSLA UNU3P8Y3WFAD |
from nltk.sentiment import SentimentIntensityAnalyzer
class Cookbook(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2014, 1, 1)
self.SetEndDate(2017, 1, 1)
self.SetCash(100000)
self.tsla = self.AddEquity("TSLA", Resolution.Minute).Symbol
self.musk = self.AddData(MuskTweet, "MUSKTWTS", Resolution.Minute).Symbol
self.Schedule.On(self.DateRules.EveryDay(self.tsla),
self.TimeRules.BeforeMarketClose(self.tsla, 15),
self.ExitPositions)
def OnData(self, data):
if self.musk in data:
score = data[self.musk].Value
content = data[self.musk].Tweet
if score > 0.5:
self.SetHoldings(self.tsla, 1)
elif score < -0.5:
self.SetHoldings(self.tsla, -1)
if abs(score) > 0.5:
self.Log("Score: " + str(score) + ", Tweet: " + content)
def ExitPositions(self):
self.Liquidate()
class MuskTweet(PythonData):
sia = SentimentIntensityAnalyzer()
def GetSource(self, config, date, isLive):
source = "https://www.dropbox.com/s/ovnsrgg1fou1y0r/MuskTweetsPreProcessed.csv?dl=1"
return SubscriptionDataSource(source, SubscriptionTransportMedium.RemoteFile);
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
data = line.split(',')
tweet = MuskTweet()
try:
tweet.Symbol = config.Symbol
tweet.Time = datetime.strptime(data[0], '%Y-%m-%d %H:%M:%S') + timedelta(minutes=1)
content = data[1].lower()
if "tsla" in content or "tesla" in content:
tweet.Value = self.sia.polarity_scores(content)["compound"]
else:
tweet.Value = 0
tweet["Tweet"] = str(content)
except ValueError:
return None
return tweet