| Overall Statistics |
|
Total Orders 1498 Average Win 0.06% Average Loss -0.01% Compounding Annual Return 22.663% Drawdown 19.300% Expectancy 5.688 Start Equity 100000 End Equity 184631.42 Net Profit 84.631% Sharpe Ratio 0.948 Sortino Ratio 0.974 Probabilistic Sharpe Ratio 49.514% Loss Rate 18% Win Rate 82% Profit-Loss Ratio 7.14 Alpha 0.087 Beta 0.614 Annual Standard Deviation 0.154 Annual Variance 0.024 Information Ratio 0.406 Tracking Error 0.124 Treynor Ratio 0.238 Total Fees $1498.00 Estimated Strategy Capacity $15000000.00 Lowest Capacity Asset AAPL R735QTJ8XC9X Portfolio Turnover 0.08% |
#region imports
from AlgorithmImports import *
from datetime import timedelta
from utils import get_position_size
from futures import categories
#endregion
import pandas as pd
class FastTrendFollowingLongAndShortWithTrendStrenthAlphaModel(AlphaModel):
_futures = []
_BUSINESS_DAYS_IN_YEAR = 256
_FORECAST_SCALAR_BY_SPAN = {64: 1.91, 32: 2.79, 16: 4.1, 8: 5.95, 4: 8.53, 2: 12.1} # Given by author on https://gitfront.io/r/user-4000052/iTvUZwEUN2Ta/AFTS-CODE/blob/chapter7.py
def __init__(self, algorithm, slow_ema_span, abs_forecast_cap, sigma_span, target_risk, blend_years):
self._algorithm = algorithm
self._slow_ema_span = slow_ema_span
self._fast_ema_span = int(self._slow_ema_span / 4) # "Any ratio between the two moving average lengths of two and six gives statistically indistinguishable results." (p.165)
self._annulaization_factor = self._BUSINESS_DAYS_IN_YEAR ** 0.5
self._abs_forecast_cap = abs_forecast_cap
self._sigma_span = sigma_span
self._target_risk = target_risk
self._blend_years = blend_years
self._idm = 1.5 # Instrument Diversification Multiplier. Hardcoded in https://gitfront.io/r/user-4000052/iTvUZwEUN2Ta/AFTS-CODE/blob/chapter8.py
self._forecast_scalar = self._FORECAST_SCALAR_BY_SPAN[self._fast_ema_span]
self._categories = categories
self._total_lookback = timedelta(365*self._blend_years+self._slow_ema_span)
self._day = -1
def update(self, algorithm: QCAlgorithm, data: Slice) -> List[Insight]:
# Record the new contract in the continuous series
if data.quote_bars.count:
for future in self._futures:
future.latest_mapped = future.mapped
# If warming up and still > 7 days before start date, don't do anything
# We use a 7-day buffer so that the algorithm has active insights when warm-up ends
if algorithm.start_date - algorithm.time > timedelta(7):
return []
if self._day == data.time.day or data.bars.count == 0:
return []
# Estimate the standard deviation of % daily returns for each future
sigma_pct_by_future = {}
for future in self._futures:
# Estimate the standard deviation of % daily returns
sigma_pct = self._estimate_std_of_pct_returns(future.raw_history, future.adjusted_history)
if sigma_pct is None:
continue
sigma_pct_by_future[future] = sigma_pct
# Create insights
insights = []
weight_by_symbol = get_position_size({future.symbol: self._categories[future.symbol] for future in sigma_pct_by_future.keys()})
for symbol, instrument_weight in weight_by_symbol.items():
future = algorithm.securities[symbol]
current_contract = algorithm.securities[future.mapped]
daily_risk_price_terms = sigma_pct_by_future[future] / (self._annulaization_factor) * current_contract.price # "The price should be for the expiry date we currently hold (not the back-adjusted price)" (p.55)
# Calculate target position
position = (algorithm.portfolio.total_portfolio_value * self._idm * instrument_weight * self._target_risk) /(future.symbol_properties.contract_multiplier * daily_risk_price_terms * (self._annulaization_factor))
# Adjust target position based on forecast
risk_adjusted_ewmac = future.ewmac.current.value / daily_risk_price_terms
scaled_forecast_for_ewmac = risk_adjusted_ewmac * self._forecast_scalar
forecast = max(min(scaled_forecast_for_ewmac, self._abs_forecast_cap), -self._abs_forecast_cap)
if forecast * position == 0:
continue
# Save some data for the PCM
current_contract.forecast = forecast
current_contract.position = position
# Create the insights
local_time = Extensions.convert_to(algorithm.time, algorithm.time_zone, future.exchange.time_zone)
expiry = future.exchange.hours.get_next_market_open(local_time, False) - timedelta(seconds=1)
insights.append(Insight.price(future.mapped, expiry, InsightDirection.UP if forecast * position > 0 else InsightDirection.DOWN))
if insights:
self._day = data.time.day
return insights
def _estimate_std_of_pct_returns(self, raw_history, adjusted_history):
# Align history of raw and adjusted prices
idx = sorted(list(set(adjusted_history.index).intersection(set(raw_history.index))))
adjusted_history_aligned = adjusted_history.loc[idx]
raw_history_aligned = raw_history.loc[idx]
# Calculate exponentially weighted standard deviation of returns
returns = adjusted_history_aligned.diff().dropna() / raw_history_aligned.shift(1).dropna()
rolling_ewmstd_pct_returns = returns.ewm(span=self._sigma_span, min_periods=self._sigma_span).std().dropna()
if rolling_ewmstd_pct_returns.empty: # Not enough history
return None
# Annualize sigma estimate
annulized_rolling_ewmstd_pct_returns = rolling_ewmstd_pct_returns * (self._annulaization_factor)
# Blend the sigma estimate (p.80)
blended_estimate = 0.3*annulized_rolling_ewmstd_pct_returns.mean() + 0.7*annulized_rolling_ewmstd_pct_returns.iloc[-1]
return blended_estimate
def _consolidation_handler(self, sender: object, consolidated_bar: TradeBar) -> None:
security = self._algorithm.securities[consolidated_bar.symbol]
end_date = consolidated_bar.end_time.date()
if security.symbol.is_canonical():
# Update adjusted history
security.adjusted_history.loc[end_date] = consolidated_bar.close
security.adjusted_history = security.adjusted_history[security.adjusted_history.index >= end_date - self._total_lookback]
else:
# Update raw history
continuous_contract = self._algorithm.securities[security.symbol.canonical]
if consolidated_bar.symbol == continuous_contract.latest_mapped:
continuous_contract.raw_history.loc[end_date] = consolidated_bar.close
continuous_contract.raw_history = continuous_contract.raw_history[continuous_contract.raw_history.index >= end_date - self._total_lookback]
def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None:
for security in changes.added_securities:
symbol = security.symbol
# Create a consolidator to update the history
security.consolidator = TradeBarConsolidator(timedelta(1))
security.consolidator.data_consolidated += self._consolidation_handler
algorithm.subscription_manager.add_consolidator(symbol, security.consolidator)
if security.symbol.is_canonical():
# Add some members to track price history
security.adjusted_history = pd.Series()
security.raw_history = pd.Series()
# Create indicators for the continuous contract
security.fast_ema = algorithm.EMA(security.symbol, self._fast_ema_span, Resolution.DAILY)
security.slow_ema = algorithm.EMA(security.symbol, self._slow_ema_span, Resolution.DAILY)
security.ewmac = IndicatorExtensions.minus(security.fast_ema, security.slow_ema)
security.automatic_indicators = [security.fast_ema, security.slow_ema]
self._futures.append(security)
for security in changes.removed_securities:
# Remove consolidator + indicators
algorithm.subscription_manager.remove_consolidator(security.symbol, security.consolidator)
if security.symbol.is_canonical():
for indicator in security.automatic_indicators:
algorithm.deregister_indicator(indicator)
# region imports
from AlgorithmImports import *
# endregion
categories = {
Symbol.create(Futures.Financials.Y_10_TREASURY_NOTE, SecurityType.FUTURE, Market.CBOT): ("Fixed Income", "Bonds"),
Symbol.create(Futures.Indices.SP_500_E_MINI, SecurityType.FUTURE, Market.CME): ("Equity", "US")
}
# region imports
from datetime import timedelta
from AlgorithmImports import *
from QuantConnect.DataSource import *
import math
#from futures import future_datas
from universe import AdvancedFuturesUniverseSelectionModel
from alpha import FastTrendFollowingLongAndShortWithTrendStrenthAlphaModel
from portfolio import BufferedPortfolioConstructionModel
# endregion
from QuantConnect.DataSource import *
class USEquityDataAlgorithm(QCAlgorithm):
position: int = 0 # Current position, in contract units
buy_qty: int = 0 # Number of long contract sides traded
sell_qty: int = 0 # Number of short contract sides traded
real_total_buy_px: float = 0 ## Total realized buy price
real_total_sell_px: float = 0 ## Total realized sell price
theo_total_buy_px: float = 0 # Total buy price to liquidate current position
theo_total_sell_px: float = 0 # Total sell price to liquidate current position
POS_ALPHA_THRESHOLD = 1
NEG_ALPHA_THRESHOLD = POS_ALPHA_THRESHOLD * 2
POSITION_MAX = 1000
def initialize(self) -> None:
self.set_start_date(2018, 1, 1)
self.set_end_date(2021, 1, 1)
self.set_cash(100000)
self.universe_settings.resolution = Resolution.TICK
symbols = [Symbol.create("AAPL", SecurityType.EQUITY, Market.USA)]
self.add_universe_selection(ManualUniverseSelectionModel(symbols))
self.aapl = self.add_equity("AAPL", Resolution.MINUTE).symbol
def on_data(self, slice: Slice) -> None:
if self.aapl in slice.quote_bars:
tick = slice.quote_bars[self.aapl]
ask_size = tick.last_ask_size
bid_size = tick.last_bid_size
ask_price = tick.ask.close
bid_price = tick.bid.close
try:
skew = math.log10(bid_size) - math.log10(ask_size)
mid_price = (ask_price + bid_price) / 2
except:
return
# Buy/sell based when skew signal is large
if skew > self.POS_ALPHA_THRESHOLD and self.position < self.POSITION_MAX:
pos = round(1 * skew)
self.position += pos
self.market_order(self.aapl, pos)
elif skew < -self.NEG_ALPHA_THRESHOLD and self.position > -self.POSITION_MAX:
pos = round(1 * skew)
self.position += pos
self.market_order(self.aapl, pos)
#region imports
from AlgorithmImports import *
#endregion
class BufferedPortfolioConstructionModel(EqualWeightingPortfolioConstructionModel):
def __init__(self, rebalance, buffer_scaler):
super().__init__(rebalance)
self._buffer_scaler = buffer_scaler
def create_targets(self, algorithm: QCAlgorithm, insights: List[Insight]) -> List[PortfolioTarget]:
targets = super().create_targets(algorithm, insights)
adj_targets = []
for insight in insights:
future_contract = algorithm.securities[insight.symbol]
optimal_position = future_contract.forecast * future_contract.position / 10
## Create buffer zone to reduce churn
buffer_width = self._buffer_scaler * abs(future_contract.position)
upper_buffer = round(optimal_position + buffer_width)
lower_buffer = round(optimal_position - buffer_width)
# Determine quantity to put holdings into buffer zone
current_holdings = future_contract.holdings.quantity
if lower_buffer <= current_holdings <= upper_buffer:
continue
quantity = lower_buffer if current_holdings < lower_buffer else upper_buffer
# Place trades
adj_targets.append(PortfolioTarget(insight.symbol, quantity))
# Liquidate contracts that have an expired insight
for target in targets:
if target.quantity == 0:
adj_targets.append(target)
return adj_targets
#region imports from AlgorithmImports import * #endregion # 08/29/2023: -Adjusted insight expiry so all insights end at the same time each day # https://www.quantconnect.com/terminal/processCache?request=embedded_backtest_e1c8af207b1a4da945a4696f7db3ef9a.html # # 08/31/2023: -Adjusted universe filter to ensure the Mapped contract is always in the universe # -Updated the Alpha model to rely on warm-up rather than history requests # -Reduced the `blend_years` parameter to 3 to avoid any data issues from far in the past # https://www.quantconnect.com/terminal/processCache?request=embedded_backtest_ecb85ecf7a6ea332088f4b369017fa09.html # # 04/15/2024: -Updated to PEP8 style # https://www.quantconnect.com/terminal/processCache?request=embedded_backtest_f8e01739e5624ee03aa3a6e2ac5c5108.html
# region imports
from AlgorithmImports import *
from pandas import Timedelta as timedelta
from datetime import datetime
from Selection.FutureUniverseSelectionModel import FutureUniverseSelectionModel
from futures import categories
# endregion
class AdvancedFuturesUniverseSelectionModel(FutureUniverseSelectionModel):
def __init__(self) -> None:
super().__init__(timedelta(1), self.select_future_chain_symbols)
self.symbols = list(categories.keys())
def select_future_chain_symbols(self, utc_time: datetime) -> List[Symbol]:
return self.symbols
def filter(self, filter: FutureFilterUniverse) -> FutureFilterUniverse:
return filter.expiration(0, 365)
#region imports
from AlgorithmImports import *
#endregion
def get_position_size(group):
subcategories = {}
for category, subcategory in group.values():
if category not in subcategories:
subcategories[category] = {subcategory: 0}
elif subcategory not in subcategories[category]:
subcategories[category][subcategory] = 0
subcategories[category][subcategory] += 1
category_count = len(subcategories.keys())
subcategory_count = {category: len(subcategory.keys()) for category, subcategory in subcategories.items()}
weights = {}
for symbol in group:
category, subcategory = group[symbol]
weight = 1 / category_count / subcategory_count[category] / subcategories[category][subcategory]
weights[symbol] = weight
return weights