| Overall Statistics |
|
Total Trades 521 Average Win 2.81% Average Loss -2.69% Compounding Annual Return 75.658% Drawdown 50.000% Expectancy 0.109 Net Profit 79.218% Sharpe Ratio 1.56 Probabilistic Sharpe Ratio 56.167% Loss Rate 46% Win Rate 54% Profit-Loss Ratio 1.04 Alpha 0.81 Beta 0.077 Annual Standard Deviation 0.533 Annual Variance 0.284 Information Ratio 0.999 Tracking Error 0.547 Treynor Ratio 10.815 Total Fees $814.19 Estimated Strategy Capacity $3700000.00 Lowest Capacity Asset WAG R735QTJ8XC9X |
from AlgorithmImports import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from itertools import groupby
from math import ceil
class Top100UniverseSelectionModel(FundamentalUniverseSelectionModel):
'''Defines the top 100 universe as a universe selection model for framework algorithm
For details: https://github.com/QuantConnect/Lean/pull/1663'''
def __init__(self, filterFineData = True, universeSettings = None):
'''Initializes a new default instance of the QC500UniverseSelectionModel'''
super().__init__(filterFineData, universeSettings)
self.numberOfSymbolsCoarse = 1000
self.numberOfSymbolsFine = 100
self.dollarVolumeBySymbol = {}
self.lastMonth = -1
def SelectCoarse(self, algorithm, coarse):
'''Performs coarse selection for the QC500 constituents.
The stocks must have fundamental data
The stock must have positive previous-day close price
The stock must have positive volume on the previous trading day'''
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0],
key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]
self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume}
# If no security has met the QC500 criteria, the universe is unchanged.
# A new selection will be attempted on the next trading day as self.lastMonth is not updated
if len(self.dollarVolumeBySymbol) == 0:
return Universe.Unchanged
# return the symbol objects our sorted collection
return list(self.dollarVolumeBySymbol.keys())
def SelectFine(self, algorithm, fine):
'''Performs fine selection for the QC500 constituents
The company's headquarter must in the U.S.
The stock must be traded on either the NYSE or NASDAQ
At least half a year since its initial public offering
The stock's market cap must be greater than 500 million'''
sortedBySector = sorted([x for x in fine if x.CompanyReference.CountryId == "USA"
and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"]
and (algorithm.Time - x.SecurityReference.IPODate).days > 180
and x.MarketCap > 5e8],
key = lambda x: x.CompanyReference.IndustryTemplateCode)
count = len(sortedBySector)
# If no security has met the QC500 criteria, the universe is unchanged.
# A new selection will be attempted on the next trading day as self.lastMonth is not updated
if count == 0:
return Universe.Unchanged
# Update self.lastMonth after all QC500 criteria checks passed
self.lastMonth = algorithm.Time.month
percent = self.numberOfSymbolsFine / count
sortedByDollarVolume = []
# select stocks with top dollar volume in every single sector
for code, g in groupby(sortedBySector, lambda x: x.CompanyReference.IndustryTemplateCode):
y = sorted(g, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse = True)
c = ceil(len(y) * percent)
sortedByDollarVolume.extend(y[:c])
sortedByDollarVolume = sorted(sortedByDollarVolume, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True)
return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]from MeanMomentumAlphaModel import MeanMomentumAlphaModel
from Top100UniverseSelectionModel import Top100UniverseSelectionModel
class MeanMomentumAlgorithm(QCAlgorithmFramework):
def Initialize(self):
self.UniverseSettings.Resolution = Resolution.Daily
self.UniverseSettings.Leverage = 1.0
self.SetBrokerageModel(BrokerageName.AlphaStreams)
self.SetBenchmark(Symbol.Create("SPY", SecurityType.Equity, Market.USA))
self.SetStartDate(2020,8,20)
self.SetEndDate(2021,9,1)
self.SetCash(25000)
# S&P100
tickers = [
'AAPL', 'ADBE', 'ADI', 'ADP', 'ADSK', 'AEP', 'ALGN', 'AMAT', 'AMD',
'AMGN', 'AMZN', 'ANSS', 'ASML', 'ATVI', 'AVGO', 'BIDU', 'BIIB',
'BKNG', 'CDNS', 'CDW', 'CERN', 'CHKP', 'CHTR', 'CMCSA', 'COST',
'CPRT', 'CRWD', 'CSCO', 'CSX', 'CTAS', 'CTSH', 'DLTR', 'DOCU',
'DXCM', 'EA', 'EBAY', 'EXC', 'FAST', 'FB', 'FISV', 'FOX', 'FOXA',
'GILD', 'GOOG', 'GOOGL', 'HON', 'IDXX', 'ILMN', 'INCY', 'INTC',
'INTU', 'ISRG', 'JD', 'KDP', 'KHC', 'KLAC', 'LRCX', 'LULU', 'MAR',
'MCHP', 'MDLZ', 'MELI', 'MNST', 'MRNA', 'MRVL', 'MSFT', 'MTCH',
'MU', 'NFLX', 'NTES', 'NVDA', 'NXPI', 'OKTA', 'ORLY', 'PAYX',
'PCAR', 'PDD', 'PEP', 'PTON', 'PYPL', 'QCOM', 'REGN', 'ROST',
'SBUX', 'SGEN', 'SIRI', 'SNPS', 'SPLK', 'SWKS', 'TCOM', 'TEAM',
'TMUS', 'TSLA', 'TXN', 'VRSK', 'VRSN', 'VRTX', 'WBA', 'WDAY',
'XEL', 'XLNX', 'ZM'
]
symbols = [
Symbol.Create(ticker, SecurityType.Equity, Market.USA)
for ticker in tickers
]
self.AddUniverseSelection(ManualUniverseSelectionModel(symbols))
self.SetAlpha(MeanMomentumAlphaModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
# self.SetExecution(ImmediateExecutionModel())
self.SetExecution(NullExecutionModel())
self.SetRiskManagement(TrailingStopRiskManagementModel(0.8))
self.SetWarmUp(timedelta(30))
def OnOrderEvent(self, orderEvent):
if orderEvent.Status == OrderStatus.Filled:
self.Log(
f'Processed Order: {orderEvent.Symbol}, Quantity: {orderEvent.FillQuantity}'
)class MeanMomentumAlphaModel(AlphaModel):
def __init__(self):
self.Name = "MeanMomentumAlphaModel"
self.symbolDataBySymbol = {}
self.predictionInterval = timedelta(1)
self.rollingWindow = 14
self.schedule_symbol = None
self.scheduled_event_open = None
self.scheduled_event_close = None
self.algorithm = None
self.buy_symbol = None
def ones(self, n):
return [1 for i in range(n)]
# def ClosePositions(self, algorithm):
# openPositions = [ x.Symbol for x in algorithm.Portfolio.Values if x.Invested ]
# insights=[]
# for x in openPositions:
# insight = Insight.Price(x, Expiry.EndOfDay, InsightDirection.Flat)
# insights.append(insight)
# algorithm.EmitInsights(insights)
def Update(self, algorithm, slice):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
n = self.rollingWindow
max = self.ones(n)
min = self.ones(n)
for i in range(n):
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.Ratios[-n:][i] > max[i]:
max[i] = symbolData.Ratios[-n:][i]
if symbolData.Ratios[-n:][i] < min[i]:
min[i] = symbolData.Ratios[-n:][i]
# algorithm.Log(symbolData.Ratios)
# algorithm.Log(max)
# algorithm.Log(min)
max.append(1)
min.append(1)
best = ''
worst = ''
for symbol, symbolData in self.symbolDataBySymbol.items():
# Issue...
if not slice.Bars.ContainsKey(symbol.ToString()):
return []
ratio = slice[symbol].Close/slice[symbol].Open
symbolData.Ratios.append(ratio)
if ratio > max[-1]:
best = symbol.Value
max[-1] = ratio
if ratio < min[-1]:
worst = symbol.Value
min[-1] = ratio
# algorithm.Log(symbolData.Ratios)
# algorithm.Log(max)
# algorithm.Log(min)
# algorithm.Log(best)
# algorithm.Log(worst)
cumulative_momentum_gains = 1.0
cumulative_reversion_gains = 1.0
for i in range(n):
for symbol, symbolData in self.symbolDataBySymbol.items():
# algorithm.Log('ratios: ' + str(symbolData.Ratios))
# algorithm.Log('last n+1 ratios: ' + str(symbolData.Ratios[-n-1:]))
if symbolData.Ratios[-n-1:][i] == max[i]:
cumulative_momentum_gains *= symbolData.Ratios[-n-1:][i+1]
if symbolData.Ratios[-n-1:][i] == min[i]:
cumulative_reversion_gains *= symbolData.Ratios[-n-1:][i+1]
# algorithm.Log('max[i]: ' + str(max[i]))
# algorithm.Log('min[i]: ' + str(min[i]))
# algorithm.Log('mom gains: ' + str(cumulative_momentum_gains))
# algorithm.Log('rev gains: ' + str(cumulative_reversion_gains))
# algorithm.Log('\n')
# for symbol, symbolData in self.symbolDataBySymbol.items():
# algorithm.Log(symbolData.Ratios)
algorithm.Log(cumulative_momentum_gains)
algorithm.Log(cumulative_reversion_gains)
if cumulative_momentum_gains > cumulative_reversion_gains:
insights.append(Insight.Price(best, Expiry.EndOfDay, InsightDirection.Up))
algorithm.Log("Momentum approach on " + best)
self.buy_symbol = best
else:
insights.append(Insight.Price(worst, Expiry.EndOfDay, InsightDirection.Up))
algorithm.Log("Reversion approach on " + worst)
self.buy_symbol = worst
return insights
def OpenPositions(self):
if self.algorithm.Portfolio.Invested:
self.algorithm.Liquidate()
self.algorithm.SetHoldings(self.buy_symbol, 1)
def ClosePositions(self):
return
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
for added in changes.AddedSecurities:
symbol = added.Symbol
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
symbolData = SymbolData(added, algorithm, self.rollingWindow)
self.symbolDataBySymbol[added.Symbol] = symbolData
if self.schedule_symbol is None:
self.algorithm = algorithm
# Schedule event 1 minute before market close
self.scheduled_event_open = algorithm.Schedule.On(
algorithm.DateRules.EveryDay(symbol),
algorithm.TimeRules.AfterMarketOpen(symbol, 1),
self.OpenPositions)
self.scheduled_event_close = algorithm.Schedule.On(
algorithm.DateRules.EveryDay(symbol),
algorithm.TimeRules.BeforeMarketClose(symbol, 1),
self.ClosePositions)
self.schedule_symbol = symbol
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, security, algorithm, rollingWindow):
self.Security = security
self.Symbol = security.Symbol
# preload ratios of last n days before yesterday given n = rollingWindow
history = algorithm.History(
[self.Symbol], rollingWindow+1, Resolution.Daily
).head(rollingWindow)
# for open, close in zip(history['open'], history['close']):
# algorithm.Log(str(open) + ' ' + str(close) + ' ' + str(close/open))
self.Ratios = [
close/open for open, close in zip(history['open'], history['close'])
]