| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 0.707% Drawdown 0.800% Expectancy 0 Net Profit 0.707% Sharpe Ratio 0.722 Probabilistic Sharpe Ratio 37.990% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.006 Beta 0.002 Annual Standard Deviation 0.008 Annual Variance 0 Information Ratio -0.996 Tracking Error 0.174 Treynor Ratio 3.294 Total Fees $1.00 |
from System import *
from clr import AddReference
AddReference("QuantConnect.Algorithm")
from QuantConnect import *
from QuantConnect.Orders import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Portfolio import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from QuantConnect.Algorithm.Framework.Portfolio import PortfolioConstructionModel
class NadionUncoupledPrism(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetEndDate(2011,1 ,1)
self.SetCash(100000)
self.SetBenchmark("QQQ")
self.averages = {}
#self.SetAlpha()
self.AddEquity("SPY", Resolution.Daily)
#self.AddUniverseSelection(TechnologyUniverseModule())
self.AddRiskManagement(NullRiskManagementModel())
self.SetPortfolioConstruction(NullPortfolioConstructionModel())
self.SetExecution(ImmediateExecutionModel())
self.UniverseSettings.Resolution = Resolution.Daily
def OnData(self, data):
if self.IsWarmingUp:
return
for security in self.changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
for security in self.changes.AddedSecurities:
if not security.Invested:
self.SetHoldings(security.Symbol, .05)
else:
return
def OnSecuritiesChanged(self, changes):
self.changes = changes
class TechnologyUniverseModule(FundamentalUniverseSelectionModel):
#This module selects the most liquid stocks listed on the Nasdaq Stock Exchange.
def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None):
#Initializes a new default instance of the TechnologyUniverseModule
super().__init__(filterFineData, universeSettings, securityInitializer)
self.numberOfSymbolsCoarse = 1000
self.numberOfSymbolsFine = 100
self.dollarVolumeBySymbol = {}
self.lastMonth = -1
self.averages = {}
def SelectCoarse(self, algorithm, coarse):
selected = []
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
coarse = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 10],
key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]
for security in coarse:
symbol = security.Symbol
if symbol not in self.averages:
history = self.History(symbol, 200, Resolution.Daily)
self.averages[symbol] = SelectionData(history)
self.averages[symbol].update(self.Time, security.AdjustedPrice)
if self.averages[symbol].is_ready() and self.averages[symbol].fast > self.averages[symbol].slow:
self.dollarVolumeBySymbol.append(symbol)
'''
-The stock must have fundamental data
-The stock must have positive previous-month close price
-The stock must have positive volume on the previous trading month
'''
#self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume}
# If no security has met the QC500 criteria, the universe is unchanged.
if len(self.dollarVolumeBySymbol) == 0:
return Universe.Unchanged
return list(self.dollarVolumeBySymbol.keys())
#return list(self.dollarVolumeBySymbol.keys())
def SelectFine(self, algorithm, fine):
sortedByDollarVolume = sorted([x for x in fine if x.CompanyReference.CountryId == "USA" \
and x.CompanyReference.PrimaryExchangeID == "NAS" \
and x.CompanyReference.IndustryTemplateCode == "N" \
and (algorithm.Time - x.SecurityReference.IPODate).days > 180], \
key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True)
if len(sortedByDollarVolume) == 0:
return Universe.Unchanged
self.lastMonth = algorithm.Time.month
return [x.Symbol for x in sortedByDollarVolume[:20]]
class SelectionData():
# Update the constructor to accept a history array
def __init__(self, history):
self.slow = ExponentialMovingAverage(200)
self.fast = ExponentialMovingAverage(50)
# Loop over the history data and update the indicators
for bar in history.itertuples():
self.fast.Update(bar.Index[1], bar.close)
self.slow.Update(bar.Index[1], bar.close)
def is_ready(self):
return self.slow.IsReady and self.fast.IsReady
def update(self, time, price):
self.fast.Update(time, price)
self.slow.Update(time, price)
class NullPortfolioConstructionModel(PortfolioConstructionModel):
def CreateTargets(self, algorithm, insights):
return []
class ImmediateExecutionModel(ExecutionModel):
def __init__(self):
self.targetsCollection = PortfolioTargetCollection()
def Execute(self, algorithm, targets):
# for performance we check count value, OrderByMarginImpact and ClearFulfilled are expensive to call
self.targetsCollection.AddRange(targets)
if self.targetsCollection.Count > 0:
for target in self.targetsCollection.OrderByMarginImpact(algorithm):
# calculate remaining quantity to be ordered
quantity = OrderSizing.GetUnorderedQuantity(algorithm, target)
if quantity != 0:
algorithm.MarketOrder(target.Symbol, quantity)
self.targetsCollection.ClearFulfilled(algorithm)from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
class TechnologyUniverseModule(FundamentalUniverseSelectionModel):
'''
This module selects the most liquid stocks listed on the Nasdaq Stock Exchange.
'''
def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None):
'''Initializes a new default instance of the TechnologyUniverseModule'''
super().__init__(filterFineData, universeSettings, securityInitializer)
self.numberOfSymbolsCoarse = 1000
self.numberOfSymbolsFine = 100
self.dollarVolumeBySymbol = {}
self.lastMonth = -1
def SelectCoarse(self, algorithm, coarse):
'''
Performs a coarse selection:
-The stock must have fundamental data
-The stock must have positive previous-day close price
-The stock must have positive volume on the previous trading day
'''
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0],
key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]
self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume}
# If no security has met the QC500 criteria, the universe is unchanged.
if len(self.dollarVolumeBySymbol) == 0:
return Universe.Unchanged
return list(self.dollarVolumeBySymbol.keys())
def SelectFine(self, algorithm, fine):
'''
Performs a fine selection:
-The company's headquarter must in the U.S.
-The stock must be traded on the NASDAQ stock exchange
-The stock must be in the Industry Template Code catagory N
-At least half a year since its initial public offering
'''
# Filter stocks and sort on dollar volume
sortedByDollarVolume = sorted([x for x in fine if x.CompanyReference.CountryId == "USA"
and x.CompanyReference.PrimaryExchangeID == "NAS"
and x.CompanyReference.IndustryTemplateCode == "N"
and (algorithm.Time - x.SecurityReference.IPODate).days > 180],
key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True)
if len(sortedByDollarVolume) == 0:
return Universe.Unchanged
self.lastMonth = algorithm.Time.month
return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]