| Overall Statistics |
|
Total Orders 1645 Average Win 0.13% Average Loss -0.19% Compounding Annual Return 12.742% Drawdown 22.300% Expectancy 0.062 Start Equity 1000000 End Equity 1269000.30 Net Profit 26.900% Sharpe Ratio 0.369 Sortino Ratio 0.452 Probabilistic Sharpe Ratio 21.751% Loss Rate 37% Win Rate 63% Profit-Loss Ratio 0.69 Alpha 0.029 Beta 0.989 Annual Standard Deviation 0.2 Annual Variance 0.04 Information Ratio 0.228 Tracking Error 0.125 Treynor Ratio 0.075 Total Fees $2863.34 Estimated Strategy Capacity $18000000.00 Lowest Capacity Asset CYTK SY8OYP5ZLDUT Portfolio Turnover 3.06% |
#region imports
from AlgorithmImports import *
from indicator import CustomMomentumPercent
#endregion
class MomentumQuantilesAlphaModel(AlphaModel):
def __init__(self, quantiles, lookback_months):
self.quantiles = quantiles
self.lookback_months = lookback_months
self.securities_list = []
self.day = -1
def on_securities_changed(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None:
# Create and register indicator for each security in the universe
security_by_symbol = {}
for security in changes.added_securities:
# Create an indicator
security_by_symbol[security.symbol] = security
security.indicator = CustomMomentumPercent("custom", self.lookback_months)
self._register_indicator(algorithm, security)
self.securities_list.append(security)
# Warm up the indicators of newly-added stocks
if security_by_symbol:
history = algorithm.history[TradeBar](list(security_by_symbol.keys()), (self.lookback_months+1) * 30, Resolution.DAILY, data_normalization_mode=DataNormalizationMode.SCALED_RAW)
for trade_bars in history:
for bar in trade_bars.values():
security_by_symbol[bar.symbol].consolidator.update(bar)
# Stop updating consolidator when the security is removed from the universe
for security in changes.removed_securities:
if security in self.securities_list:
algorithm.subscription_manager.remove_consolidator(security.symbol, security.consolidator)
self.securities_list.remove(security)
def update(self, algorithm: QCAlgorithm, data: Slice) -> List[Insight]:
# Reset indicators when corporate actions occur
for symbol in set(data.splits.keys() + data.dividends.keys()):
security = algorithm.securities[symbol]
if security in self.securities_list:
security.indicator.reset()
algorithm.subscription_manager.remove_consolidator(security.symbol, security.consolidator)
self._register_indicator(algorithm, security)
history = algorithm.history[TradeBar](security.symbol, (security.indicator.warm_up_period+1) * 30, Resolution.DAILY, data_normalization_mode=DataNormalizationMode.SCALED_RAW)
for bar in history:
security.consolidator.update(bar)
# Only emit insights when there is quote data, not when a corporate action occurs (at midnight)
if data.quote_bars.count == 0:
return []
# Only emit insights once per day
if self.day == algorithm.time.day:
return []
self.day = algorithm.time.day
# Get the momentum of each asset in the universe
momentum_by_symbol = {security.symbol : security.indicator.current.value
for security in self.securities_list if security.symbol in data.quote_bars and security.indicator.is_ready}
# Determine how many assets to hold in the portfolio
quantile_size = int(len(momentum_by_symbol)/self.quantiles)
if quantile_size == 0:
return []
# Create insights to long the assets in the universe with the greatest momentum
weight = 1 / (quantile_size+1)
insights = []
for symbol, _ in sorted(momentum_by_symbol.items(), key=lambda x: x[1], reverse=True)[:quantile_size]:
insights.append(Insight.price(symbol, Expiry.END_OF_DAY, InsightDirection.UP, weight=weight))
return insights
def _register_indicator(self, algorithm, security):
# Update the indicator with monthly bars
security.consolidator = TradeBarConsolidator(Calendar.MONTHLY)
algorithm.subscription_manager.add_consolidator(security.symbol, security.consolidator)
algorithm.register_indicator(security.symbol, security.indicator, security.consolidator)
#region imports
from AlgorithmImports import *
#endregion
class CustomMomentumPercent(PythonIndicator):
def __init__(self, name, period):
self.Name = name
self.Time = datetime.min
self.Value = 0
self.momentum = MomentumPercent(period)
def Update(self, input):
self.momentum.Update(IndicatorDataPoint(input.Symbol, input.EndTime, input.Close))
self.Time = input.EndTime
self.Value = self.momentum.Current.Value * input.Volume * input.Close # Multiply momentum percent with dollar volume
return self.momentum.IsReady
# region imports
from AlgorithmImports import *
from alpha import MomentumQuantilesAlphaModel
# endregion
class TacticalMomentumRankAlgorithm(QCAlgorithm):
undesired_symbols_from_previous_deployment = []
checked_symbols_from_previous_deployment = False
def initialize(self):
self.set_start_date(2022, 3, 1) # Set Start Date
self.set_end_date(2024, 3, 1)
self.set_cash(1_000_000)
self.SetBenchmark("SPY")
self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN)
self.settings.minimum_order_margin_portfolio_percentage = 0
self.settings.rebalance_portfolio_on_security_changes = False
self.settings.rebalance_portfolio_on_insight_changes = False
self.day = -1
self.set_warm_up(timedelta(7))
self.universe_settings.asynchronous = True
self.add_universe_selection(FundamentalUniverseSelectionModel(self.fundamental_filter_function))
self.add_alpha(MomentumQuantilesAlphaModel(
int(self.get_parameter("quantiles")),
int(self.get_parameter("lookback_months"))
))
self.set_portfolio_construction(InsightWeightingPortfolioConstructionModel(rebalance=Expiry.EndOfMonth))
self.add_risk_management(NullRiskManagementModel())
self.set_execution(ImmediateExecutionModel())
def on_data(self, data):
# Exit positions that aren't backed by existing insights
# If you don't want this behavior, delete this method definition.
if not self.is_warming_up and not self.checked_symbols_from_previous_deployment:
for security_holding in self.portfolio.values():
if not security_holding.invested:
continue
symbol = security_holding.symbol
if not self.insights.has_active_insights(symbol, self.utc_time):
self.undesired_symbols_from_previous_deployment.append(symbol)
self.checked_symbols_from_previous_deployment = True
for symbol in self.undesired_symbols_from_previous_deployment:
if self.is_market_open(symbol):
self.liquidate(symbol, tag="Holding from previous deployment that's no longer desired")
self.undesired_symbols_from_previous_deployment.remove(symbol)
'''def _rebalance_func(self, time):
if self.day != self.time.day and not self.is_warming_up and self.current_slice.quote_bars.count > 0:
self.day = self.time.day
return time
return None'''
def fundamental_filter_function(self, fundamental: List[Fundamental]):
filtered = [f for f in fundamental if f.symbol.value != "AMC" and f.has_fundamental_data and not np.isnan(f.dollar_volume)]
sorted_by_dollar_volume = sorted(filtered, key=lambda f: f.dollar_volume, reverse=True)
return [f.symbol for f in sorted_by_dollar_volume[:1000]]#region imports from AlgorithmImports import * #endregion # 05/19/2023: -Added a warm-up period to restore the algorithm state between deployments. # -Added OnWarmupFinished to liquidate existing holdings that aren't backed by active insights. # -Removed flat insights because https://github.com/QuantConnect/Lean/pull/7251 made them unnecessary. # https://www.quantconnect.com/terminal/processCache?request=embedded_backtest_a34c371a3b4818e5157cd76b876ecae0.html # # 07/13/2023: -Replaced the SymbolData class by with custom Security properties # -Fixed warm-up logic to liquidate undesired portfolio holdings on re-deployment # -Set the MinimumOrderMarginPortfolioPercentage to 0 # https://www.quantconnect.com/terminal/processCache?request=embedded_backtest_82183246d97159739b71348a0a09c64a.html # # 04/15/2024: -Updated to PEP8 style # https://www.quantconnect.com/terminal/processCache?request=embedded_backtest_70e5d842913e0e8033c345061a1391b5.html