| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 1.050% Drawdown 3.000% Expectancy 0 Net Profit 3.207% Sharpe Ratio 0.596 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.018 Beta -0.561 Annual Standard Deviation 0.015 Annual Variance 0 Information Ratio -0.531 Tracking Error 0.015 Treynor Ratio -0.016 Total Fees $1.00 |
from System.Collections.Generic import List
from QuantConnect.Data.UniverseSelection import *
import operator
from math import ceil,floor
import numpy as np
import pandas as pd
from scipy import stats
class AltmanZScoreAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2016,1,1) #Set Start Date
#self.SetEndDate(2017,05,02) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.flag1 = 1
self.flag2 = 0
self.flag3 = 0
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
self.UniverseSettings.Resolution = Resolution.Daily
self.UniverseSettings.Leverage = 1
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.AddEquity("SPY")
self.__numberOfSymbols = 100
self.__numberOfSymbolsFine = 10
self._changes = None
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalancing))
self.SetWarmUp(200)
self.splotName = 'Strategy Info'
sPlot = Chart(self.splotName)
sPlot.AddSeries(Series('Leverage', SeriesType.Line, 0))
self.AddChart(sPlot)
def CoarseSelectionFunction(self, coarse):
if self.flag1:
CoarseWithFundamental = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
sortedByDollarVolume = sorted(CoarseWithFundamental, key=lambda x: x.DollarVolume, reverse=True)
top = sortedByDollarVolume[:self.__numberOfSymbols]
self.prices = {}
for x in top:
self.prices[x.Symbol] = x.Price
self.Log("Found " + str(len(top)) + "for course selection universe")
return [i.Symbol for i in top]
else:
self.Log("Got None for course selection universe")
return []
def FineSelectionFunction(self, fine):
if self.flag1:
self.flag1 = 0
self.flag2 = 1
filtered_fine = [x for x in fine if x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths and
x.FinancialStatements.BalanceSheet.TotalLiabilitiesAsReported.TwelveMonths and
x.FinancialStatements.BalanceSheet.WorkingCapital.TwelveMonths and
x.FinancialStatements.BalanceSheet.RetainedEarnings.TwelveMonths and
x.FinancialStatements.IncomeStatement.EBIT.TwelveMonths and
x.FinancialStatements.IncomeStatement.TotalRevenue.TwelveMonths and
x.EarningReports.BasicAverageShares.TwelveMonths]
sortedByfactor1 = [x for x in filtered_fine if ZScore(x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths,
x.FinancialStatements.BalanceSheet.TotalLiabilitiesAsReported.TwelveMonths,
x.FinancialStatements.BalanceSheet.WorkingCapital.TwelveMonths,
x.FinancialStatements.BalanceSheet.RetainedEarnings.TwelveMonths,
x.FinancialStatements.IncomeStatement.EBIT.TwelveMonths,
x.FinancialStatements.IncomeStatement.TotalRevenue.TwelveMonths,
x.EarningReports.BasicAverageShares.TwelveMonths,self.prices[x.Symbol]).ObjectiveScore() > 1.81]
filtered_finer = [x for x in sortedByfactor1 if x.ValuationRatios.EVToEBITDA]
sortedByfactor2 = sorted(filtered_finer, key=lambda x: x.ValuationRatios.EVToEBITDA, reverse=False)
topFine = sortedByfactor2[:self.__numberOfSymbolsFine]
self.flag3 = self.flag3 + 1
self.Log("Found " + str(len(topFine)) + "for fine selection universe")
return [i.Symbol for i in topFine]
else:
self.Log("Found None for fine selection universe")
return []
def OnData(self, data):
if self.flag3 > 0:
if self._changes is not None and self.flag2 == 1:
self.flag2 = 0
for security in self._changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
for security in self._changes.AddedSecurities:
self.SetHoldings(security.Symbol, 1./float(self.__numberOfSymbolsFine))
self._changes = None;
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self.Log("Changes in universe!")
self._changes = changes
def Rebalancing(self):
self.flag1 += 1
self.account_leverage = self.Portfolio.TotalAbsoluteHoldingsCost / self.Portfolio.TotalPortfolioValue
self.Plot(self.splotName,'Leverage', float(self.account_leverage))
class ZScore(object):
def __init__(self, totalassets, totalliabilities, workingcapital, retainedearnings, ebit, totalrevenue, shares, price):
self.totalassets = float(totalassets)
self.totalliabilities = float(totalliabilities)
self.workingcapital = float(workingcapital)
self.retainedearnings = float(retainedearnings)
self.ebit = float(ebit)
self.totalrevenue = float(totalrevenue)
self.shares = float(shares)
self.price = float(price)
def ObjectiveScore(self):
X1 = 1.2 * (self.workingcapital / self.totalassets)
X2 = 1.4 * (self.retainedearnings / self.totalassets)
X3 = 3.3 * (self.ebit / self.totalassets)
X4 = 0.6 * ((self.shares * self.price) / self.totalliabilities)
X5 = 1.0 * (self.totalrevenue / self.totalassets)
return X1 + X2 + X3 + X4 + X5