| Overall Statistics |
|
Total Trades 1741 Average Win 0.21% Average Loss -0.19% Compounding Annual Return 29.137% Drawdown 10.600% Expectancy 0.095 Net Profit 14.554% Sharpe Ratio 1.201 Probabilistic Sharpe Ratio 53.269% Loss Rate 49% Win Rate 51% Profit-Loss Ratio 1.15 Alpha 0.219 Beta -0.115 Annual Standard Deviation 0.176 Annual Variance 0.031 Information Ratio 0.328 Tracking Error 0.444 Treynor Ratio -1.845 Total Fees $374.20 |
from datetime import timedelta, datetime
class SMAPairsTrading(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 1, 1)
self.SetEndDate(2020, 7, 31)
self.SetCash(1000)
self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Margin)
symbols = [Symbol.Create("BTCUSD", SecurityType.Crypto, Market.Bitfinex ),
Symbol.Create("ETHUSD", SecurityType.Crypto, Market.Bitfinex)]
self.AddUniverseSelection(ManualUniverseSelectionModel(symbols))
self.UniverseSettings.Resolution = Resolution.Hour
self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw
self.AddAlpha(PairsTradingAlphaModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetExecution(ImmediateExecutionModel())
class PairsTradingAlphaModel(AlphaModel):
def __init__(self):
self.pair = [ ]
self.spreadMean = SimpleMovingAverage(500)
self.spreadStd = StandardDeviation(500)
self.period = timedelta(minutes=30)
def Update(self, algorithm, data):
spread = self.pair[1].Price - self.pair[0].Price
self.spreadMean.Update(algorithm.Time, spread)
self.spreadStd.Update(algorithm.Time, spread)
upperthreshold = self.spreadMean.Current.Value + self.spreadStd.Current.Value
lowerthreshold = self.spreadMean.Current.Value - self.spreadStd.Current.Value
if spread > upperthreshold:
return Insight.Group(
[
Insight.Price(self.pair[0].Symbol, self.period, InsightDirection.Up),
Insight.Price(self.pair[1].Symbol, self.period, InsightDirection.Down)
])
if spread < lowerthreshold:
return Insight.Group(
[
Insight.Price(self.pair[0].Symbol, self.period, InsightDirection.Down),
Insight.Price(self.pair[1].Symbol, self.period, InsightDirection.Up)
])
return []
def OnSecuritiesChanged(self, algorithm, changes):
self.pair = [x for x in changes.AddedSecurities]
#1. Call for 500 bars of history data for each symbol in the pair and save to the variable history
history = algorithm.History([x.Symbol for x in self.pair], 500)
#2. Unstack the Pandas data frame to reduce it to the history close price
history = history.close.unstack(level=0)
#3. Iterate through the history tuple and update the mean and standard deviation with historical data
for tuple in history.itertuples():
self.spreadMean.Update(tuple[0], tuple[2]-tuple[1])
self.spreadStd.Update(tuple[0], tuple[2]-tuple[1])