| Overall Statistics |
|
Total Trades 4 Average Win 0.95% Average Loss 0% Compounding Annual Return 2989.440% Drawdown 1.700% Expectancy 0 Net Profit 1.898% Sharpe Ratio 14.389 Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 1.299 Beta 31.364 Annual Standard Deviation 0.11 Annual Variance 0.012 Information Ratio 14.314 Tracking Error 0.11 Treynor Ratio 0.051 Total Fees $0.00 |
#
# QuantConnect Basic Template:
# Fundamentals to using a QuantConnect algorithm.
#
# You can view the QCAlgorithm base class on Github:
# https://github.com/QuantConnect/Lean/tree/master/Algorithm
#
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
import numpy as np
from QuantConnect.Indicators import *
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import *
from datetime import timedelta
class BasicTemplateAldgorithm(QCAlgorithm):
def Initialize(self):
# Set the cash we'd like to use for our backtest
# This is ignored in live trading
self.SetCash(100000)
# Start and end dates for the backtest.
# These are ignored in live trading.
self.SetStartDate(2019,2,20)
self.SetEndDate(2019,2,21)
# Set Brokerage model to load OANDA fee structure.
self.SetBrokerageModel(BrokerageName.OandaBrokerage)
# Add assets you'd like to see
self.symbol = "DE30EUR"
self.AddCfd(self.symbol, Resolution.Minute)
self.Schedule.On(self.DateRules.EveryDay(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol, 1), self.OpenMarket)
self.Schedule.On(self.DateRules.EveryDay(self.symbol), self.TimeRules.BeforeMarketClose(self.symbol, 1), self.CloseMarket)
def OpenMarket(self):
self.SetHoldings(self.symbol,2)
self.Debug(" LONG: " + str(self.Portfolio[self.symbol].Quantity) + " units worth " + str(self.Portfolio[self.symbol].Price))
def CloseMarket(self):
self.Log("Liquidating Position")
self.Liquidate(self.symbol)