| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -8.639 Tracking Error 0.315 Treynor Ratio 0 Total Fees $0.00 |
class UniverseSelection(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 4, 1) # Set Start Date
self.SetEndDate(2020, 5, 7) # Set End Date
self.SetCash(100000) # Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Minute
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.SPY = self.AddEquity('SPY', Resolution.Minute).Symbol
self.day = -1
self.num_coarse = 20
self.min_stock_price = 10
self.min_days_after_earnings = 10
self.max_days_after_earnings = 80
self.ema_period = 8 # 8 period on 5 Min TF is 40 on 1 Min TF
self.sma_period = 55 # 55 period on 5 Min TF is 275 on 1 Min TF
self.bb_period = 20 # 20 period on 30 min TF is 600 on 1 Min TF
self.bb_k = 2
self.gap_distance = 0.02 # 2%
self.data = {}
self.selectedStocks = []
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen(self.SPY, 30),
self.SelectStocks)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen(self.SPY, 1),
self.AtMarketOpen)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.BeforeMarketClose(self.SPY, 1),
self.BeforeMarketCloses)
def CoarseSelectionFunction(self, coarse):
if self.day == self.Time.day:
return Universe.Unchanged
self.day = self.Time.day
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > self.min_stock_price)]
# rank the stocks by dollar volume
# -----------------------------------
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [ x.Symbol for x in filtered[:self.num_coarse]]
def FineSelectionFunction(self, fine):
filtered = [x for x in fine if x.SecurityReference.IsPrimaryShare
and x.SecurityReference.SecurityType == "ST00000001"
and x.SecurityReference.IsDepositaryReceipt == 0
and x.CompanyReference.IsLimitedPartnership == 0
and x.EarningReports.FileDate < self.Time - timedelta(days=self.min_days_after_earnings)
and x.EarningReports.FileDate > self.Time - timedelta(days=self.max_days_after_earnings)]
return [x.Symbol for x in filtered]
# def select
def SelectStocks(self):
for symbol in self.data.keys():
sd = self.data[symbol]
isReady = sd.EMA.IsReady and sd.SMA.IsReady and sd.BB.IsReady
if isReady and self.data[symbol].GapUp and self.data[symbol].EMA > self.data[symbol].SMA and self.data[symbol].BB.UpperBand.Current.Value < self.Securities[symbol].Close:
self.selectedStocks.append(symbol)
self.Debug(f'{symbol.ToString()} {self.Time.ctime()} GapUp:{sd.GapUp} EMA:{sd.EMA} SMA:{sd.SMA} BB:{sd.BB.UpperBand.Current.Value} Close:{self.Securities[symbol].Close}')
def OnSecuritiesChanged(self, changes):
for security in changes.RemovedSecurities:
if security.Symbol in self.data:
del self.data[security.Symbol]
for security in changes.AddedSecurities:
if security.Symbol not in self.data:
self.data[security.Symbol] = SymbolData(security.Symbol, self.ema_period, self.sma_period, self.bb_period, self.bb_k, self)
def AtMarketOpen(self):
for symbol in self.data.keys():
gap = (self.Securities[symbol].Close - self.data[symbol].LastClose) / self.data[symbol].LastClose
if gap > self.gap_distance:
self.data[symbol].GapUp = True
else:
self.data[symbol].GapUp = False
def BeforeMarketCloses(self):
for symbol in self.data.keys():
self.data[symbol].LastClose = self.Securities[symbol].Close
class SymbolData(object):
def __init__(self, symbol, emaPeriod, smaPeriod, bbPeriod, bbKvalue, algorithm):
self.Symbol = symbol
self.LastClose = 0
self.GapUp = False
self.EMA = ExponentialMovingAverage(emaPeriod)
self.SMA = SimpleMovingAverage(smaPeriod)
self.BB = BollingerBands(bbPeriod, bbKvalue, MovingAverageType.Exponential)
algorithm.Consolidate(symbol, timedelta(minutes=30), self.updateThirtyMinIndicators)
algorithm.Consolidate(symbol, timedelta(minutes=5), self.updateFiveMinIndicators)
# Exit if no daily data. We need 1 bar of data (one day)
# ---------------------------------------------------------
history = algorithm.History(symbol, 1, Resolution.Daily)
if history.empty or 'close' not in history.columns:
return
# iterate over historical data, get/store last close (of prev bar)
# ------------------------------------------------------------------
else:
for index, row in history.loc[symbol].iterrows():
self.LastClose = row['close']
def updateThirtyMinIndicators(self, bar):
self.BB.Update(bar.EndTime, bar.Close)
def updateFiveMinIndicators(self, bar):
self.EMA.Update(bar.EndTime, bar.Close)
self.SMA.Update(bar.EndTime, bar.Close)