| Overall Statistics |
|
Total Trades 429 Average Win 2.64% Average Loss -1.11% Compounding Annual Return 28.019% Drawdown 27.500% Expectancy 1.232 Net Profit 2382.889% Sharpe Ratio 1.346 Probabilistic Sharpe Ratio 78.856% Loss Rate 34% Win Rate 66% Profit-Loss Ratio 2.37 Alpha 0.235 Beta 0.108 Annual Standard Deviation 0.183 Annual Variance 0.033 Information Ratio 0.603 Tracking Error 0.246 Treynor Ratio 2.271 Total Fees $2870.88 |
"""
SEL(stock selection part)
Based on the 'Momentum Strategy with Market Cap and EV/EBITDA' strategy introduced by Jing Wu, 6 Feb 2018
adapted and recoded by Jack Simonson, Goldie Yalamanchi, Vladimir, Peter Guenther, and Leandro Maia
https://www.quantconnect.com/forum/discussion/3377/momentum-strategy-with-market-cap-and-ev-ebitda/p1
https://www.quantconnect.com/forum/discussion/9678/quality-companies-in-an-uptrend/p1
https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p1
I/O(in & out part)
The Distilled Bear in & out algo
based on Dan Whitnable's 22 Oct 2020 algo on Quantopian.
Dan's original notes:
"This is based on Peter Guenther great “In & Out” algo.
Included Tentor Testivis recommendation to use volatility adaptive calculation of WAIT_DAYS and RET.
Included Vladimir's ideas to eliminate fixed constants
Help from Thomas Chang"
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/
"""
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
class EarningsFactorWithMomentum_InOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1) #Set Start Date
#self.SetEndDate(2009, 12, 31) #Set End Date
self.cap = 100000
self.SetCash(self.cap)
res = Resolution.Minute
# Holdings
### 'Out' holdings and weights
self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev
self.HLD_OUT = {self.BND1: 1}
### 'In' holdings and weights (static stock selection strategy)
##### These are determined flexibly via sorting on fundamentals
##### In & Out parameters #####
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.AddEquity('XLI', res).Symbol # vs industrials
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU, self.METL, self.USDX]
# Specific variables
self.DISTILLED_BEAR = 999
self.BE_IN = 999
self.BE_IN_PRIOR = 999
self.VOLA_LOOKBACK = 126
self.WAITD_CONSTANT = 85
self.DCOUNT = 0 # count of total days since start
self.OUTDAY = 0 # dcount when self.be_in=0
# set a warm-up period to initialize the indicator
self.SetWarmUp(timedelta(350))
##### Momentum & fundamentals strategy parameters #####
#self.UniverseSettings.Resolution = Resolution.Daily
self.UniverseSettings.Resolution = Resolution.Minute
self.AddUniverse(self.UniverseCoarseFilter, self.UniverseFundamentalsFilter)
self.num_screener = 100
self.num_stocks = 10
self.formation_days = 70
self.lowmom = False
self.data = {}
# rebalance the universe selection once a month
self.rebalance_flag = 0
# make sure to run the universe selection at the start of the algorithm even if it's not the month start
self.flip_flag = 0
self.first_month_trade_flag = 1
self.trade_flag = 0
self.symbols = None
self.month = -1
self.reb_count = 0
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_out_of_the_market
)
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.BeforeMarketClose('SPY', 0),
self.record_vars
)
# Setup daily consolidation
symbols = [self.MRKT] + self.FORPAIRS
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
self.lookback = 252
self.history = self.History(symbols, self.lookback, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
self.update_history_shift()
# Benchmark = record SPY
self.spy = []
def UniverseCoarseFilter(self, coarse):
#self.Debug(str(self.Time) + "UniverseCoarseFilter: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
#if (self.rebalance_flag or self.first_month_trade_flag) and (self.be_in or self.flip_flag):
if self.month == self.Time.month:
return Universe.Unchanged
self.month = self.Time.month
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
# rank the stocks by dollar volume
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in filtered[:200]]
#else:
# return self.symbols
def UniverseFundamentalsFilter(self, fundamental):
#self.Debug(str(self.Time) + "UniverseFundamentalsFilter: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
#if (self.rebalance_flag or self.first_month_trade_flag) and (self.be_in or self.flip_flag):
#hist = self.History([i.Symbol for i in fundamental], 1, Resolution.Daily)
try:
filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)
and float(x.EarningReports.BasicAverageShares.ThreeMonths) * x.Price > 2e9]
#and float(x.EarningReports.BasicAverageShares.ThreeMonths) * hist.loc[str(x.Symbol)]['close'][0] > 2e9]
#and x.EarningReports.BasicAverageShares.ThreeMonths * (x.EarningReports.BasicEPS.TwelveMonths*x.ValuationRatios.PERatio) > 2e9]
except:
filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)]
top = sorted(filtered_fundamental, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:self.num_screener]
self.symbols = [x.Symbol for x in top]
self.rebalance_flag = 0
self.first_month_trade_flag = 0
self.trade_flag = 1
return self.symbols
#else:
# return self.symbols
def OnSecuritiesChanged(self, changes):
for security in changes.RemovedSecurities:
if security.Symbol in self.data:
del self.data[security.Symbol]
addedSymbols = []
for security in changes.AddedSecurities:
addedSymbols.append(security.Symbol)
if security.Symbol not in self.data:
self.data[security.Symbol] = SymbolData(security.Symbol, self.formation_days)
if len(addedSymbols) > 0:
history = self.History(addedSymbols, 1 + self.formation_days, Resolution.Daily).loc[addedSymbols]
for symbol in addedSymbols:
try:
self.data[symbol].Warmup(history.loc[symbol])
except:
self.Debug(str(symbol))
continue
self.RegisterIndicator(symbol, self.data[symbol].Roc, Resolution.Daily, Field.Close)
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-self.lookback:]
self.update_history_shift()
def update_history_shift(self):
self.history_shift = self.history.rolling(11, center=True).mean().shift(60)
def derive_vola_waitdays(self):
volatility = np.log1p(self.history[[self.MRKT]].pct_change()).std() * np.sqrt(252)
wait_days = int(volatility * self.WAITD_CONSTANT)
returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT)
return wait_days, returns_lookback
def rebalance_when_out_of_the_market(self):
wait_days, returns_lookback = self.derive_vola_waitdays()
## Check for Bear
returns = self.history.pct_change(returns_lookback).iloc[-1]
silver_returns = returns[self.SLVA]
gold_returns = returns[self.GOLD]
industrials_returns = returns[self.INDU]
utilities_returns = returns[self.UTIL]
metals_returns = returns[self.METL]
dollar_returns = returns[self.USDX]
self.DISTILLED_BEAR = (((gold_returns > silver_returns) and
(utilities_returns > industrials_returns)) and
(metals_returns < dollar_returns)
)
# Determine whether 'in' or 'out' of the market
if self.DISTILLED_BEAR:
self.BE_IN = False
self.OUTDAY = self.DCOUNT
self.trade({**dict.fromkeys(self.Portfolio.Keys, 0), **self.HLD_OUT})
if self.DCOUNT >= self.OUTDAY + wait_days:
self.BE_IN = True
self.DCOUNT += 1
# Only re-shuffle stock allocation when switching from out to in, not in-between
if not self.BE_IN_PRIOR and self.BE_IN:
self.flip_flag = 1
self.rebalance()
self.reb_count = self.DCOUNT
self.flip_flag = 0
self.BE_IN_PRIOR = self.BE_IN
def rebalance(self):
self.rebalance_flag = 1
#self.Debug(str(self.Time) + "rebalance: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
if self.symbols is None: return
chosen_df = self.calc_return(self.symbols)
chosen_df = chosen_df.iloc[:self.num_stocks]
for symbol in chosen_df.index:
self.AddEquity(symbol)
weight = 0.99/len(chosen_df)
self.trade({**dict.fromkeys(chosen_df.index.tolist(), weight), **dict.fromkeys(list(dict.fromkeys(set(self.Portfolio.Keys) - set(chosen_df.index))), 0), **dict.fromkeys(self.HLD_OUT, 0)})
def calc_return(self, stocks):
ret = {}
for symbol in stocks:
try:
ret[symbol] = self.data[symbol].Roc.Current.Value
except:
self.Debug(str(symbol))
continue
df_ret = pd.DataFrame.from_dict(ret, orient='index')
df_ret.columns = ['return']
sort_return = df_ret.sort_values(by = ['return'], ascending = self.lowmom)
return sort_return
def trade(self, weight_by_sec):
buys = []
for sec, weight in weight_by_sec.items():
# Check that we have data in the algorithm to process a trade
if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None:
continue
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
quantity = self.CalculateOrderQuantity(sec, weight)
if quantity > 0:
buys.append((sec, quantity))
elif quantity < 0:
self.Order(sec, quantity)
for sec, quantity in buys:
self.Order(sec, quantity)
def record_vars(self):
self.spy.append(self.history[self.MRKT].iloc[-1])
spy_perf = self.spy[-1] / self.spy[0] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 2))
class SymbolData(object):
def __init__(self, symbol, roc):
self.Symbol = symbol
self.Roc = RateOfChange(roc)
def Warmup(self, history):
for index, row in history.iterrows():
self.Roc.Update(index, row['close'])