| Overall Statistics |
|
Total Orders 190 Average Win 1.45% Average Loss -1.94% Compounding Annual Return 6.961% Drawdown 10.100% Expectancy 0.345 Start Equity 1000000 End Equity 1848760 Net Profit 84.876% Sharpe Ratio 0.476 Sortino Ratio 0.313 Probabilistic Sharpe Ratio 38.835% Loss Rate 23% Win Rate 77% Profit-Loss Ratio 0.75 Alpha 0.009 Beta 0.179 Annual Standard Deviation 0.052 Annual Variance 0.003 Information Ratio -0.48 Tracking Error 0.129 Treynor Ratio 0.14 Total Fees $0.00 Estimated Strategy Capacity $36000000.00 Lowest Capacity Asset SPX 32PB0JBNCVVJI|SPX 31 Portfolio Turnover 0.08% |
# region imports
from AlgorithmImports import *
from itertools import groupby
from sklearn.cluster import KMeans
# endregion
class IVRankClustersAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2016, 1, 1)
self.set_end_date(2025, 2, 14)
self.set_cash(1_000_000)
self.set_security_initializer(BrokerageModelSecurityInitializer(self.brokerage_model, FuncSecuritySeeder(self.get_last_known_prices)))
self._index = self.add_index('SPX')
self._index.std = self.std(self._index.symbol, 22, Resolution.DAILY)
self._option = self.add_index_option(self._index.symbol)
self._option.set_filter(lambda universe: universe.include_weeklys().expiration(30, 90).strikes(-1, 1))
self._option.iv_rank = IVRank()
self._option.strike_availability = StrikeAvailability()
self._option.contract = None
self.schedule.on(self.date_rules.every_day(self._index.symbol), self.time_rules.after_market_open(self._index.symbol, 1), self._rebalance)
self.set_warm_up(timedelta(365)) # Warm-up the IV Rank indicator.
def _rebalance(self):
# Update the Strike Availability indicator.
chain = self.option_chain(self._index.symbol, flatten=True).data_frame
if chain.empty:
return
if self._option.strike_availability.update(self.time, chain):
self.plot('Strike Availability', 'Value', self._option.strike_availability.value)
self.plot('Strike Availability', 'Label', self._option.strike_availability.label)
# Update the IV Rank indicator.
universe_chain = self.current_slice.option_chains.get(self._option.symbol)
if not universe_chain or not self._option.iv_rank.update(universe_chain) or self.is_warming_up:
return
self.plot('IV Rank', 'Value', self._option.iv_rank.value)
self.plot('IV Rank', 'Label', self._option.iv_rank.label)
if self.portfolio.invested:
if self._option.iv_rank.label == 2 and self._option.strike_availability.label == 2:
self.liquidate(tag='IV rank and strike availability is high!')
# If the contract expires soon, liquidate.
elif self._option.contract.id.date - self.time < timedelta(7):
self.liquidate(tag='Expires within 7 days')
# If the contract approaches ATM, liquidate.
elif self._index.price <= self._option.contract.id.strike_price:
self.liquidate(tag='ATM')
# If IV Rank is low/moderate, we expect low/moderate volatility in the future.
# Sell ATM put contracts to collect premium. They should expire OTM since SPX has upward drift.
elif self._option.iv_rank.label < 2 and self._option.strike_availability.label < 2:
# Sell a contract (put; closest expiry after 30 days; strike is n STD(price, 22 days) below current price)
chain = chain[(chain.expiry == chain.expiry[chain.expiry - self.time >= timedelta(30)].min()) & (chain.right == OptionRight.PUT) & (chain.strike <= self._index.price)].sort_values('strike')
self._option.contract = chain.index[-min(int(3*self._index.std.current.value/5), len(chain))]
self.add_option_contract(self._option.contract)
self.set_holdings(self._option.contract, -0.25)
class StrikeAvailability:
def __init__(self, lookback=252, period=10):
self._roc = RateOfChange(period)
self._roc.window.size = lookback
self._roc.window.reset()
def update(self, t, chain):
self._roc.update(t, len(chain.strike.unique()) / chain.underlyinglastprice.iloc[0])
self.is_ready = self._roc.window.is_ready
if self.is_ready:
self.value = self._roc.current.value
kmeans = KMeans(n_clusters=3, random_state=0).fit(np.array([x.value for x in self._roc.window][::-1]).reshape(-1, 1))
# Update the labels so that 0=Low, 1=medium, 2=high.
label_map = {original: sorted_ for sorted_, original in enumerate(np.argsort(kmeans.cluster_centers_.ravel()))}
labels = [label_map[label] for label in kmeans.labels_]
# Save the label of the current value.
self.label = labels[-1] # 0=Low, 1=Medium, 2=High
return self.is_ready
class IVRank:
def __init__(self, lookback=252, min_expiry=30):
self._min_iv = Minimum(lookback)
self._max_iv = Maximum(lookback)
self._min_expiry = timedelta(min_expiry)
self._history = RollingWindow[float](lookback)
def update(self, chain):
# Select contracts to use in the aggregation.
# 1) Contracts have the closest expiry after 1 month.
expiries = [c.id.date for c in chain if c.id.date >= chain.end_time + self._min_expiry]
if not expiries:
return
expiry = min([c.id.date for c in chain if c.id.date >= chain.end_time + self._min_expiry])
contracts = [c for c in chain if c.id.date == expiry]
# 2) ATM contracts.
abs_delta_by_symbol = {c.symbol: abs(c.underlying_last_price - c.id.strike_price) for c in contracts}
abs_delta = min(abs_delta_by_symbol.values())
contracts = [c for c in contracts if abs_delta_by_symbol[c.symbol] == abs_delta]
# Aggregate the IVs of the selected contracts.
agg_iv = float(np.median([c.implied_volatility for c in contracts]))
self._history.add(agg_iv)
# Calculate the IV Rank and determine if it's high, medium, or low.
self._min_iv.update(chain.end_time, agg_iv)
self.is_ready = self._max_iv.update(chain.end_time, agg_iv)
if self.is_ready:
self.value = float((agg_iv - self._min_iv.current.value) / (self._max_iv.current.value - self._min_iv.current.value))
# Cluster the trailing IV Rank values into high, medium, and low groups.
kmeans = KMeans(n_clusters=3, random_state=0).fit(np.array(list(self._history)[::-1]).reshape(-1, 1))
# Update the labels so that 0=Low, 1=Medium, 2=High.
label_map = {original: sorted_ for sorted_, original in enumerate(np.argsort(kmeans.cluster_centers_.ravel()))}
labels = [label_map[label] for label in kmeans.labels_]
# Save the label of the current value.
self.label = labels[-1] # 0=Low, 1=Medium, 2=High
return self.is_ready