| Overall Statistics |
|
Total Trades 1112 Average Win 0.64% Average Loss -0.24% Compounding Annual Return 19.048% Drawdown 18.000% Expectancy 1.245 Net Profit 393.294% Sharpe Ratio 1.176 Probabilistic Sharpe Ratio 64.493% Loss Rate 38% Win Rate 62% Profit-Loss Ratio 2.62 Alpha 0 Beta 0 Annual Standard Deviation 0.115 Annual Variance 0.013 Information Ratio 1.176 Tracking Error 0.115 Treynor Ratio 0 Total Fees $1989.20 Estimated Strategy Capacity $16000000.00 Lowest Capacity Asset YUM R735QTJ8XC9X |
"""
To Do
- Dynamic selection of ETFs vs static in Risk Manamgent section. Line 68?
- Volatility Position Sizing of Index ETF Basket? See Clenow formula...https://www.followingthetrend.com/2017/06/volatility-parity-position-sizing-using-standard-deviation/
- Post trades, current cash available/margin used, and current postions and results site for Team / stakeholders to view via web.
- Post portfolio changes and current allocation to private area on Agile side (Signal subscription for other advisors / institutions not on IB)
- Execution options (Market vs Limit vs VWAP) https://github.com/QuantConnect/Lean/tree/master/Algorithm.Framework/Execution
- Publish Reports to Website (Where users can register to see results)
> Jim's Comments - Change the word backtest to strategy in "the report"
- Logging and live trade review/reporting.
"""
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
class ValuationRockets_inout(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2013, 1, 1) #Set Start Date
#self.SetEndDate(2010, 12, 31) #Set End Date
self.cap = 100000
self.SetCash(self.cap)
# LIVE TRADING
if self.LiveMode:
self.Debug("Trading Live!")
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
# Group Trading
# Use a default FA Account Group with an Allocation Method
self.DefaultOrderProperties = InteractiveBrokersOrderProperties()
# account group created manually in IB/TWS
self.DefaultOrderProperties.FaGroup = "CE"
# supported allocation methods are: EqualQuantity, NetLiq, AvailableEquity, PctChange
self.DefaultOrderProperties.FaMethod = "AvailableEquity"
# set a default FA Allocation Profile
# Alex: I commented the following line out, since it would "reset" the previous settings
#self.DefaultOrderProperties = InteractiveBrokersOrderProperties()
# allocation profile created manually in IB/TWS
# self.DefaultOrderProperties.FaProfile = "TestProfileP"
#Algo Start
res = Resolution.Hour
self.leverage = .98
# Holdings
### 'Out' holdings and weights
self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev
self.quantity = {self.BND1: 0}
# Choose in & out algo
self.go_inout_vs_dbear = 0 # 1=In&Out, 0=DistilledBear
##### In & Out parameters #####
# Feed-in constants
self.INI_WAIT_DAYS = 5 # out for 3 trading weeks
self.wait_days = self.INI_WAIT_DAYS
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
#self.INFL = self.AddEquity('RINF', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations
self.TIPS = self.AddEquity('TIP', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations; Treasury Yield = TIPS Yield + Expected Inflation
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC # vs industrials
self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF)
self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU, self.TIPS] #self.INFL
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX]
self.pairlist = ['G_S', 'U_I', 'C_A']
# Initialize variables
## 'In'/'out' indicator
self.be_in = 1 #-1 #initially, set to an arbitrary value different from 1 (in) and 0 (out)
self.be_in_prior = 0 #-1 #initially, set to an arbitrary value different from 1 (in) and 0 (out)
## Day count variables
self.dcount = 0 # count of total days since start
self.outday = (-self.INI_WAIT_DAYS+1) # setting ensures universe updating at algo start
## Flexi wait days
self.WDadjvar = self.INI_WAIT_DAYS
self.adjwaitdays = self.INI_WAIT_DAYS
## For inflation gauge
self.debt1st = []
self.tips1st = []
##### Distilled Bear parameters (note: some signals shared with In & Out) #####
self.DISTILLED_BEAR = 1 #-1
self.VOLA_LOOKBACK = 126
self.WAITD_CONSTANT = 85
# set a warm-up period to initialize the indicator
self.SetWarmUp(timedelta(350))
##### Valuation Rockets parameters #####
self.UniverseSettings.Resolution = res
self.AddUniverse(self.UniverseCoarseFilter, self.UniverseFundamentalsFilter)
self.num_coarse = 100
self.num_screener = 50
self.num_stocks = 20
self.formation_days = 126
self.lowmom = False
self.data = {}
self.setrebalancefreq = 60 # X days, update universe and momentum calculation
self.updatefinefilter = 0
self.symbols = None
self.reb_count = 0
self.initial_trade = False
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 180),
self.rebalance_when_out_of_the_market)
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.BeforeMarketClose('SPY', 0),
self.record_vars)
# Benchmarks
self.QQQ = self.AddEquity('QQQ', res).Symbol
self.benchmarks = []
self.year = self.Time.year #for resetting benchmarks annually if applicable
# Setup daily consolidation
symbols = [self.MRKT] + self.SIGNALS + self.FORPAIRS + [self.QQQ]
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
if self.go_inout_vs_dbear==1: self.lookback = 252
if self.go_inout_vs_dbear==0: self.lookback = 126
self.history = self.History(symbols, self.lookback, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
def UniverseCoarseFilter(self, coarse):
if self.initial_trade or not (((self.dcount-self.reb_count)==self.setrebalancefreq) or (self.dcount == self.outday + self.adjwaitdays - 1)):
self.updatefinefilter = 0
return Universe.Unchanged
self.updatefinefilter = 1
self.initial_trade = True
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
# rank the stocks by dollar volume
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in filtered[:self.num_coarse]]
def UniverseFundamentalsFilter(self, fundamental):
if self.updatefinefilter == 0:
return Universe.Unchanged
# Add other fundamental critera for specific industries, dividends etc.
filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)
and float(x.EarningReports.BasicAverageShares.ThreeMonths) * x.Price > 2e9
and x.SecurityReference.IsPrimaryShare
and x.SecurityReference.SecurityType == "ST00000001"
and x.SecurityReference.IsDepositaryReceipt == 0
and x.CompanyReference.IsLimitedPartnership == 0]
# Add other fundamental critera for specific industries, dividends etc.
top = sorted(filtered_fundamental, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:self.num_screener]
self.symbols = [x.Symbol for x in top]
self.updatefinefilter = 0
self.reb_count = self.dcount
return self.symbols
def OnSecuritiesChanged(self, changes):
addedSymbols = []
for security in changes.AddedSecurities:
addedSymbols.append(security.Symbol)
if security.Symbol not in self.data:
self.data[security.Symbol] = SymbolData(security.Symbol, self.formation_days, self)
if len(addedSymbols) > 0:
history = self.History(addedSymbols, 1 + self.formation_days, Resolution.Daily).loc[addedSymbols]
for symbol in addedSymbols:
try:
self.data[symbol].Warmup(history.loc[symbol])
except:
self.Debug(str(symbol))
continue
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-self.lookback:]
if self.go_inout_vs_dbear==1: self.update_history_shift()
def update_history_shift(self):
self.history_shift = self.history.rolling(11, center=True).mean().shift(60)
def derive_vola_waitdays(self):
volatility = 0.6 * np.log1p(self.history[[self.MRKT]].pct_change()).std() * np.sqrt(252)
wait_days = int(volatility * self.WAITD_CONSTANT)
returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT)
return wait_days, returns_lookback
def signalcheck_inout(self):
##### In & Out signal check logic #####
# Returns sample to detect extreme observations
returns_sample = (self.history / self.history_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU])
# Extreme observations; statist. significance = 1%
pctl_b = np.nanpercentile(returns_sample, 1, axis=0)
extreme_b = returns_sample.iloc[-1] < pctl_b
# Re-assess/disambiguate double-edged signals
if self.dcount==0:
self.debt1st = self.history[self.DEBT]
self.tips1st = self.history[self.TIPS]
self.history['INFL'] = (self.history[self.DEBT]/self.debt1st - self.history[self.TIPS]/self.tips1st)
median = np.nanmedian(self.history, axis=0)
abovemedian = self.history.iloc[-1] > median
### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal
extreme_b.loc[[self.DEBT]] = np.where((extreme_b.loc[[self.DEBT]].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[[self.DEBT]])
### GOLD/SLVA differential may increase due to inflation expectations which actually suggest an economic improvement = actually not a negative signal
extreme_b.loc['G_S'] = np.where((extreme_b.loc[['G_S']].any()) & (abovemedian.loc[['INFL']].any()), False, extreme_b.loc['G_S'])
# Determine waitdays empirically via safe haven excess returns, 50% decay
self.WDadjvar = int(
max(0.50 * self.WDadjvar,
self.INI_WAIT_DAYS * max(1,
np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1)
))
)
self.adjwaitdays = min(60, self.WDadjvar)
return (extreme_b[self.SIGNALS + self.pairlist]).any()
def signalcheck_dbear(self):
##### Distilled Bear signal check logic #####
self.adjwaitdays, returns_lookback = self.derive_vola_waitdays()
## Check for Bears
returns = self.history.pct_change(returns_lookback).iloc[-1]
silver_returns = returns[self.SLVA]
gold_returns = returns[self.GOLD]
industrials_returns = returns[self.INDU]
utilities_returns = returns[self.UTIL]
metals_returns = returns[self.METL]
dollar_returns = returns[self.USDX]
DISTILLED_BEAR = (((gold_returns > silver_returns) and
(utilities_returns > industrials_returns)) and
(metals_returns < dollar_returns)
)
return DISTILLED_BEAR
def rebalance_when_out_of_the_market(self):
if self.go_inout_vs_dbear==1: out_signal = self.signalcheck_inout()
if self.go_inout_vs_dbear==0: out_signal = self.signalcheck_dbear()
##### Determine whether 'in' or 'out' of the market. Perform out trading if applicable #####
if out_signal:
self.be_in = False
self.outday = self.dcount
if self.quantity[self.BND1] == 0:
for symbol in self.quantity.copy().keys():
if symbol == self.BND1: continue
self.Order(symbol, - self.quantity[symbol])
self.Debug([str(self.Time), str(symbol), str(-self.quantity[symbol])])
del self.quantity[symbol]
quantity = self.Portfolio.TotalPortfolioValue / self.Securities[self.BND1].Close
self.quantity[self.BND1] = math.floor(quantity)
self.Order(self.BND1, self.quantity[self.BND1])
self.Debug([str(self.Time), str(self.BND1), str(self.quantity[self.BND1])])
if (self.dcount >= self.outday + self.adjwaitdays):
self.be_in = True
# Update stock ranking/holdings, when swithing from 'out' to 'in' plus every X days when 'in' (set rebalance frequency)
if (self.be_in and not self.be_in_prior) or (self.be_in and (self.dcount==self.reb_count)):
self.rebalance()
self.be_in_prior = self.be_in
self.dcount += 1
def rebalance(self):
if self.symbols is None: return
chosen_df = self.calc_return(self.symbols)
chosen_df = chosen_df.iloc[:self.num_stocks]
if self.quantity[self.BND1] > 0:
self.Order(self.BND1, - self.quantity[self.BND1])
self.Debug([str(self.Time), str(self.BND1), str(-self.quantity[self.BND1])])
self.quantity[self.BND1] = 0
weight = self.leverage / self.num_stocks
for symbol in self.quantity.copy().keys():
if symbol == self.BND1: continue
if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None:
continue
if symbol not in chosen_df.index:
self.Order(symbol, - self.quantity[symbol])
self.Debug([str(self.Time), str(symbol), str(-self.quantity[symbol])])
del self.quantity[symbol]
else:
quantity = self.Portfolio.TotalPortfolioValue * weight / self.Securities[symbol].Close
if math.floor(quantity) != self.quantity[symbol]:
self.Order(symbol, math.floor(quantity) - self.quantity[symbol])
self.Debug([str(self.Time), str(symbol), str(math.floor(quantity) -self.quantity[symbol])])
self.quantity[symbol] = math.floor(quantity)
for symbol in chosen_df.index:
if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None:
continue
if symbol not in self.quantity.keys():
quantity = self.Portfolio.TotalPortfolioValue * weight / self.Securities[symbol].Close
self.quantity[symbol] = math.floor(quantity)
self.Order(symbol, self.quantity[symbol])
self.Debug([str(self.Time), str(symbol), str(self.quantity[symbol])])
def calc_return(self, stocks):
ret = {}
for symbol in stocks:
try:
ret[symbol] = self.data[symbol].Roc.Current.Value
except:
self.Debug(str(symbol))
continue
df_ret = pd.DataFrame.from_dict(ret, orient='index')
df_ret.columns = ['return']
sort_return = df_ret.sort_values(by = ['return'], ascending = self.lowmom)
return sort_return
def record_vars(self):
if self.dcount==1: self.benchmarks = [self.history[self.MRKT].iloc[-2], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]]
# reset portfolio value and qqq benchmark annually
if self.Time.year!=self.year: self.benchmarks = [self.benchmarks[0], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]]
self.year = self.Time.year
# SPY benchmark for main chart
spy_perf = self.history[self.MRKT].iloc[-1] / self.benchmarks[0] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
# Leverage gauge: cash level
self.Plot('Cash level', 'cash', round(self.Portfolio.Cash+self.Portfolio.UnsettledCash, 0))
# Annual saw tooth return comparison: Portfolio VS QQQ
saw_portfolio_return = self.Portfolio.TotalPortfolioValue / self.benchmarks[1] - 1
saw_qqq_return = self.history[self.QQQ].iloc[-1] / self.benchmarks[2] - 1
self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual portfolio return', round(saw_portfolio_return, 4))
self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual QQQ return', round(float(saw_qqq_return), 4))
### IN/Out indicator and wait days
self.Plot("In Out", "in_market", int(self.be_in))
self.Plot("Wait Days", "waitdays", self.adjwaitdays)
class SymbolData(object):
def __init__(self, symbol, roc, algorithm):
self.Symbol = symbol
self.Roc = RateOfChange(roc)
self.algorithm = algorithm
self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily)
algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator)
def Warmup(self, history):
for index, row in history.iterrows():
self.Roc.Update(index, row['close'])
"""
SEL(stock selection part)
Valuation Rockets
Based on the 'Momentum Strategy with Market Cap and EV/EBITDA' strategy introduced by Jing Wu, 6 Feb 2018
adapted and recoded by Jack Simonson, Goldie Yalamanchi, Vladimir, Peter Guenther, Leandro Maia, Mark Hatlan, and Simone Pantaleoni
https://www.quantconnect.com/forum/discussion/3377/momentum-strategy-with-market-cap-and-ev-ebitda/p1
https://www.quantconnect.com/forum/discussion/9678/quality-companies-in-an-uptrend/p1
https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p1
I/O(in & out part)
Option 1: The In & Out algo
Based on the 'In & Out' strategy introduced by Peter Guenther, 4 Oct 2020
expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, Thomas Chang,
Mateusz Pulka, Derek Melchin (QuantConnect), Nathan Swenson, Goldie Yalamanchi, and Sudip Sil
Option 2: The Distilled Bear in & out algo
based on Dan Whitnable's 22 Oct 2020 algo on Quantopian.
Dan's original notes:
"This is based on Peter Guenther great “In & Out” algo.
Included Tentor Testivis recommendation to use volatility adaptive calculation of WAIT_DAYS and RET.
Included Vladimir's ideas to eliminate fixed constants
Help from Thomas Chang"
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/
"""