| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 12.359% Drawdown 8.800% Expectancy 0 Net Profit 33.882% Sharpe Ratio 1.14 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.083 Beta 1.001 Annual Standard Deviation 0.088 Annual Variance 0.008 Information Ratio 0.952 Tracking Error 0.088 Treynor Ratio 0.1 Total Fees $2.08 |
from System.Collections.Generic import List
import numpy as np
from QuantConnect.Data.UniverseSelection import *
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class CANSLIM_ALGO(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2016,1,4) #Set Start Date
self.SetEndDate(2018,7,5) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.flag1 = 1
self.flag2 = 0
self.flag3 = 0
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.AddEquity('SPY')
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalancing))
# Find more symbols here: http://quantconnect.com/data
self.__numberOfSymbols = 200
self._changes = None
self.Debug("numpy test >>> print numpy.pi: " + str(np.pi))
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
if self.flag1:
CoarseWithFundamental = [x for x in coarse if (x.HasFundamentalData) and (x.DollarVolume > 500000)]
# return the symbol objects of the top entries from our sorted collection
return [x.Symbol for x in CoarseWithFundamental]
else:
return []
def FineSelectionFunction(self, fine):
if self.flag1:
self.flag1 = 0
self.flag2 = 1
filtered_fine = [x for x in fine if x.EarningReports.BasicEPS.OneMonth != 0
and x.EarningReports.BasicEPS.ThreeMonths != 0
and ((x.EarningReports.BasicEPS.OneMonth - x.EarningReports.BasicEPS.ThreeMonths)/ (x.EarningReports.BasicEPS.ThreeMonths)) > 0.25]
filtered_fine = [x for x in filtered_fine if x.OperationRatios.ROE.ThreeMonths > 0.17]
filtered_fine = [x for x in filtered_fine if ((x.FinancialStatements.IncomeStatement.TotalRevenue.OneMonth -x.FinancialStatements.IncomeStatement.TotalRevenue.ThreeMonths)/ (x.FinancialStatements.IncomeStatement.TotalRevenue.ThreeMonths)) >0.25]
self.flag3 = self.flag3 + 1
# take the stock symbols
return [x.Symbol for x in filtered_fine]
else:
return []
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
if self.flag3 > 0:
if self.flag2 == 1:
self.flag2 = 0
# if we have no changes, do nothing
if self._changes is None: return
# liquidate removed securities
for security in self._changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
self.Log("Sell security %s" % str(security.Symbol))
for security in self._changes.AddedSecurities:
self.SetHoldings(security.Symbol, 0.8/float(len(self._changes.AddedSecurities)))
self.Log("Buy security %s" % str(security.Symbol))
self._changes = None
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self._changes = changes
def Rebalancing(self):
self.flag1 = 1
# Your New Python File