| Overall Statistics |
|
Total Orders 5144 Average Win 0.12% Average Loss -0.08% Compounding Annual Return 47.129% Drawdown 29.900% Expectancy 0.580 Start Equity 10000000 End Equity 31848814.56 Net Profit 218.488% Sharpe Ratio 0.907 Sortino Ratio 1.384 Probabilistic Sharpe Ratio 26.931% Loss Rate 35% Win Rate 65% Profit-Loss Ratio 1.43 Alpha 0 Beta 0 Annual Standard Deviation 0.433 Annual Variance 0.188 Information Ratio 0.943 Tracking Error 0.433 Treynor Ratio 0 Total Fees $532163.90 Estimated Strategy Capacity $9000.00 Lowest Capacity Asset KMB R735QTJ8XC9X Portfolio Turnover 4.29% Drawdown Recovery 280 |
# region imports
from AlgorithmImports import *
# endregion
def get_r_o_a_score(fundamental):
'''Get the Profitability - Return of Asset sub-score of Piotroski F-Score'''
# Nearest ROA as current year data
roa = fundamental.operation_ratios.ROA.three_months
# 1 score if ROA datum exists and positive, else 0
return int(roa and roa > 0)
def get_operating_cash_flow_score(fundamental):
'''Get the Profitability - Operating Cash Flow sub-score of Piotroski F-Score'''
# Nearest Operating Cash Flow as current year data
operating_cashflow = fundamental.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months
# 1 score if operating cash flow datum exists and positive, else 0
return int(operating_cashflow and operating_cashflow > 0)
def get_r_o_a_change_score(fundamental):
'''Get the Profitability - Change in Return of Assets sub-score of Piotroski F-Score'''
# if current or previous year's ROA data does not exist, return 0 score
roa = fundamental.operation_ratios.ROA
if not roa.three_months or not roa.one_year:
return 0
# 1 score if change in ROA positive, else 0 score
return int(roa.three_months > roa.one_year)
def get_accruals_score(fundamental):
'''Get the Profitability - Accruals sub-score of Piotroski F-Score'''
# Nearest Operating Cash Flow, Total Assets, ROA as current year data
operating_cashflow = fundamental.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months
total_assets = fundamental.financial_statements.balance_sheet.total_assets.three_months
roa = fundamental.operation_ratios.ROA.three_months
# 1 score if operating cash flow, total assets and ROA exists, and operating cash flow / total assets > ROA, else 0
return int(operating_cashflow and total_assets and roa and operating_cashflow / total_assets > roa)
def get_leverage_score(fundamental):
'''Get the Leverage, Liquidity and Source of Funds - Change in Leverage sub-score of Piotroski F-Score'''
# if current or previous year's long term debt to equity ratio data does not exist, return 0 score
long_term_debt_ratio = fundamental.operation_ratios.long_term_debt_equity_ratio
if not long_term_debt_ratio.three_months or not long_term_debt_ratio.one_year:
return 0
# 1 score if long term debt ratio is lower in the current year, else 0 score
return int(long_term_debt_ratio.three_months < long_term_debt_ratio.one_year)
def get_liquidity_score(fundamental):
'''Get the Leverage, Liquidity and Source of Funds - Change in Liquidity sub-score of Piotroski F-Score'''
# if current or previous year's current ratio data does not exist, return 0 score
current_ratio = fundamental.operation_ratios.current_ratio
if not current_ratio.three_months or not current_ratio.one_year:
return 0
# 1 score if current ratio is higher in the current year, else 0 score
return int(current_ratio.three_months > current_ratio.one_year)
def get_share_issued_score(fundamental):
'''Get the Leverage, Liquidity and Source of Funds - Change in Number of Shares sub-score of Piotroski F-Score'''
# if current or previous year's issued shares data does not exist, return 0 score
shares_issued = fundamental.financial_statements.balance_sheet.share_issued
if not shares_issued.three_months or not shares_issued.twelve_months:
return 0
# 1 score if shares issued did not increase in the current year, else 0 score
return int(shares_issued.three_months <= shares_issued.twelve_months)
def get_gross_margin_score(fundamental):
'''Get the Leverage, Liquidity and Source of Funds - Change in Gross Margin sub-score of Piotroski F-Score'''
# if current or previous year's gross margin data does not exist, return 0 score
gross_margin = fundamental.operation_ratios.gross_margin
if not gross_margin.three_months or not gross_margin.one_year:
return 0
# 1 score if gross margin is higher in the current year, else 0 score
return int(gross_margin.three_months > gross_margin.one_year)
def get_asset_turnover_score(fundamental):
'''Get the Leverage, Liquidity and Source of Funds - Change in Asset Turnover Ratio sub-score of Piotroski F-Score'''
# if current or previous year's asset turnover data does not exist, return 0 score
asset_turnover = fundamental.operation_ratios.assets_turnover
if not asset_turnover.three_months or not asset_turnover.one_year:
return 0
# 1 score if asset turnover is higher in the current year, else 0 score
return int(asset_turnover.three_months > asset_turnover.one_year)# region imports
from AlgorithmImports import *
from universe import FScoreUniverseSelectionModel
# endregion
class PensiveFluorescentYellowParrot(QCAlgorithm):
def initialize(self):
self.set_start_date(2020, 7, 1)
self.set_end_date(2023, 7, 1)
self.set_cash(10_000_000)
self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN)
self.add_universe_selection(FScoreUniverseSelectionModel(self.get_parameter("fscore_threshold", 7)))
self.add_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(1)))
self.set_portfolio_construction(SectorWeightingPortfolioConstructionModel())
self.set_execution(SpreadExecutionModel(0.01)) # maximum 1% spread allowed
# region imports
from AlgorithmImports import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from f_score import *
# endregion
class FScoreUniverseSelectionModel(FundamentalUniverseSelectionModel):
def __init__(self, fscore_threshold):
super().__init__(self._select_assets)
self._fscore_threshold = fscore_threshold
def _select_assets(self, fundamentals):
'''Defines the fundamental selection function.
Args:
fundamentals: The fundamental data used to perform filtering
Returns:
An enumerable of symbols passing the filter'''
# We use a dictionary to hold the F-Score of each stock
f_scores = {
f.symbol: (
get_r_o_a_score(f)
+ get_operating_cash_flow_score(f)
+ get_r_o_a_change_score(f)
+ get_accruals_score(f)
+ get_leverage_score(f)
+ get_liquidity_score(f)
+ get_share_issued_score(f)
+ get_gross_margin_score(f)
+ get_asset_turnover_score(f)
) for f in fundamentals
# We only want stocks with fundamental data and price > $1
if f.has_fundamental_data and f.price > 1
}
# Select the stocks with F-Score higher than the threshold
return [symbol for symbol, fscore in f_scores.items() if fscore >= self._fscore_threshold]