| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.162 Tracking Error 0.14 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from System import *
from QuantConnect import *
from QuantConnect.Data.Consolidators import *
from QuantConnect.Data.Market import *
from QuantConnect.Orders import OrderStatus
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Indicators import *
import numpy as np
from datetime import timedelta, datetime
### <summary>
### Example structure for structuring an algorithm with indicator and consolidator data for many tickers.
class MultipleSymbolConsolidationAlgorithm(QCAlgorithm):
# Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
def Initialize(self):
# This is the number of consolidated bars we'll hold in symbol data for reference
RollingWindowSize = 50
# Holds all of our data keyed by each symbol
self.Data = {}
# Contains all of our equity symbols
EquitySymbols = ["AAPL","SPY","IBM"]
# Date bookends
self.SetStartDate(2014, 12, 1)
self.SetEndDate(2016, 1, 1)
# initialize our equity data
for symbol in EquitySymbols:
equity = self.AddEquity(symbol, Resolution.Daily)
self.Data[symbol] = SymbolData(equity.Symbol, RollingWindowSize)
# loop through all our symbols and request data subscriptions and initialize indicator
for symbol, symbolData in self.Data.items():
# define the indicator
symbolData.MACD = MovingAverageConvergenceDivergence("MACD", 12, 26, 9, Resolution.Daily)
# define a consolidator to consolidate data for this symbol on the requested period
consolidator = TradeBarConsolidator(1)
# write up our consolidator to update the indicator
consolidator.DataConsolidated += self.OnDataConsolidated
# we need to add this consolidator so it gets auto updates
self.SubscriptionManager.AddConsolidator(symbolData.Symbol, consolidator)
def OnDataConsolidated(self, sender, bar):
self.Data[bar.Symbol.Value].MACD.Update(bar.Time, bar.Close)
self.Data[bar.Symbol.Value].Bars.Add(bar)
def OnData(self,data):
# loop through each symbol in our structure
for symbol in self.Data.keys():
symbolData = self.Data[symbol]
if symbolData.IsReady() :
## This works and shows all data points are accessible
self.Debug(str(symbol) + str(symbolData.MACD.Slow.Current.Value))
self.Debug(str(symbol) + str(symbolData.MACD.Fast.Current.Value))
## This does not work.. what is the correct way to access the indexed MACD values?
#self.Debug(str(symbol) + str(symbolData.Bars[0].MACD.Fast))
class SymbolData(object):
def __init__(self, symbol, windowSize):
self.Symbol = symbol
self.Bars = RollingWindow[IBaseDataBar](windowSize)
# The MACD indicator for our symbol
self.MACD = None
# Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
def IsReady(self):
return self.Bars.IsReady and self.MACD.IsReady