| Overall Statistics |
|
Total Trades 60 Average Win 0.25% Average Loss -0.25% Compounding Annual Return 22.720% Drawdown 18.200% Expectancy 0.889 Net Profit 29.144% Sharpe Ratio 1.303 Probabilistic Sharpe Ratio 56.814% Loss Rate 4% Win Rate 96% Profit-Loss Ratio 0.98 Alpha 0.01 Beta 1.705 Annual Standard Deviation 0.193 Annual Variance 0.037 Information Ratio 1.276 Tracking Error 0.086 Treynor Ratio 0.147 Total Fees $38.00 |
class QuantumVerticalInterceptor(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 1, 1)
self.SetEndDate(2020, 1, 7)
self.SetCash(10000)
self.DELTA_TARGET=0.5
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Cash)
self.df_calls = None
#set a risk limit of 1% of portfolio value
self.investment_limit = self.Portfolio.TotalPortfolioValue * 0.01
# Add the option
option = self.AddOption("SPY")
self.optionSymbol = option.Symbol
# Add the initial contract filter
option.SetFilter(-5, +5, 5, 10)
# Define the Option Price Model
option.PriceModel = OptionPriceModels.CrankNicolsonFD()
#option.PriceModel = OptionPriceModels.BlackScholes()
#option.PriceModel = OptionPriceModels.AdditiveEquiprobabilities()
#option.PriceModel = OptionPriceModels.BaroneAdesiWhaley()
#option.PriceModel = OptionPriceModels.BinomialCoxRossRubinstein()
#option.PriceModel = OptionPriceModels.BinomialJarrowRudd()
#option.PriceModel = OptionPriceModels.BinomialJoshi()
#option.PriceModel = OptionPriceModels.BinomialLeisenReimer()
#option.PriceModel = OptionPriceModels.BinomialTian()
#option.PriceModel = OptionPriceModels.BinomialTrigeorgis()
#option.PriceModel = OptionPriceModels.BjerksundStensland()
#option.PriceModel = OptionPriceModels.Integral()
# Set warm up with 30 trading days to warm up the underlying volatility model
self.SetWarmUp(30, Resolution.Daily)
def OnData(self,slice):
self.Plot("Portfolio", "Margin Remaining", self.Portfolio.MarginRemaining) # Remaining margin on the account
self.Plot("Portfolio", "Margin Used", self.Portfolio.TotalMarginUsed) # Sum of margin used across all securities
if self.IsWarmingUp or not slice.OptionChains.ContainsKey(self.optionSymbol):
return
chain = slice.OptionChains[self.optionSymbol]
#set float format so delta displays correctly
pd.set_option('display.float_format', lambda x: '%.5f' % x)
#put the relevant data into the dataframe
df = pd.DataFrame([[x.Right,float(x.Strike),x.Expiry,float(x.BidPrice),float(x.AskPrice),x.Greeks.Delta,x.UnderlyingLastPrice] for x in chain],
index=[x.Symbol.Value for x in chain],
columns=['type', 'strike', 'expiry', 'ask price', 'bid price', 'delta','underlyinglast'])
#ensure expiry column is in datetime format
df['expiry'] = pd.to_datetime(df['expiry'])
# sort by expiry, descending
df.sort_values(by=['expiry'],ascending=False)
# get the most future date
furthest_date = df['expiry'].iloc[0]
# keep only those rows which have that furthest date
df = df[df.expiry == furthest_date]
#split the dataframe into calls and puts (calls are 0, puts are 1)
self.df_calls = df[df.type==0]
#sort by delta
self.df_calls.sort_values(by=['delta'],ascending=False)
#select the closest two records to the DELTA TARGET
#try:
uppercall_ind = self.df_calls[self.df_calls.delta<self.DELTA_TARGET].delta.idxmax()
lowercall_ind = self.df_calls[self.df_calls.delta>self.DELTA_TARGET].delta.idxmin()
self.df_calls = self.df_calls[self.df_calls.index.isin([lowercall_ind,uppercall_ind])]
spread_value = self.df_calls.at[lowercall_ind,'bid price'] - self.df_calls.at[uppercall_ind,'ask price']
max_risk = self.df_calls.at[uppercall_ind,'strike'] - self.df_calls.at[lowercall_ind,'strike']
max_risk_contract = max_risk * 100
max_investment = math.trunc(self.investment_limit / max_risk_contract)
self.Sell(OptionStrategies.BearCallSpread(self.optionSymbol, self.df_calls.at[lowercall_ind,'strike'], self.df_calls.at[uppercall_ind,'strike'] , self.df_calls.at[uppercall_ind,'expiry']), max_investment)
#except:
# returnfrom QuantConnect.Securities.Option import OptionPriceModels
from QuantConnect.Securities import GetMaximumOrderQuantityForTargetBuyingPowerParameters
from datetime import timedelta
import decimal as d
from my_calendar import last_trading_day
import pandas as pd
class DeltaHedgedStraddleAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2017, 1, 6)
self.SetEndDate(2018, 4, 6)
self.SetCash(100000)
#self.Benchmark("SPY")
self.Log("PERIOD: 2017-2019")
# ----------------------------------------------------------------------
# Algo params
# ----------------------------------------------------------------------
self.MIN_EXPIRY = 17 #Shortest DTE to consider
self.MAX_EXPIRY = 37 #Longest DTE to consider
self.MIN_DELTA = .37 #lowest delta = lower risk = less returns
self.MAX_DELTA = .49 #highest delta = higher risk = more returns
self.k_filter_low = -25
self.k_filter_high = 1
self.resol = Resolution.Minute # Resolution.Minute .Hour .Daily
self.tkr = "SPY" # "SPY", "GOOG", ...
self.Lev = d.Decimal(1.0)
self.single_trade_allocation = .4 #max portfolio value to place one single trade
self.Settings.FreePortfolioValuePercentage = 0.07 #default is .025
# self.Ntnl_perc = d.Decimal( round( 1. / (2. * self.MAX_EXPIRY/7.), 2) ) # notional percentage, e.g. 0.08
self.select_flag, self.hedge_flag = False, False
self.previous_delta, self.delta_threshold = d.Decimal(0.0), d.Decimal(0.05)
# ----------------------------------------------------------------------
# add underlying Equity
equity = self.AddEquity(self.tkr, self.resol)
equity.SetDataNormalizationMode(DataNormalizationMode.Raw) # IMPORTANT: default
self.equity_symbol = equity.Symbol
#self.SetSecurityInitializer(self.CustomSecurityInitializer)
# Add options
option = self.AddOption(self.tkr, self.resol)
option.SetDataNormalizationMode(DataNormalizationMode.Raw) # IMPORTANT: default
#option.SetLeverage(2.0)
self.option_symbol = option.Symbol
# set our strike/expiry filter for this option chain
option.SetFilter(self.UniverseFunc) # option.SetFilter(-2, +2, timedelta(0), timedelta(30))
# for greeks and pricer (needs some warmup) - https://github.com/QuantConnect/Lean/blob/21cd972e99f70f007ce689bdaeeafe3cb4ea9c77/Common/Securities/Option/OptionPriceModels.cs#L81
option.PriceModel = OptionPriceModels.CrankNicolsonFD() # both European & American, automatically
# this is needed for Greeks calcs
self.SetWarmUp(TimeSpan.FromDays(7)) # timedelta(7)
self._assignedOption = False
self.call, self.put = None, None
# -----------------------------------------------------------------------------
# scheduled functions
# -----------------------------------------------------------------------------
#self.Schedule.On(self.DateRules.EveryDay(self.equity_symbol),
# self.TimeRules.BeforeMarketClose(self.equity_symbol, 10),
# Action(self.close_options))
def close_options(self):
""" Liquidate opts (with some value) and underlying
"""
#return
# check this is the last trading day
#if self.last_trading_day != self.Time.date(): return
#self.Log("On last trading day: liquidate options with value and underlying ")
# liquidate options (if invested and in the money [otherwise their price is min of $0.01)
#for x in self.Portfolio: # symbol = x.Key; security = x.Value ## but also symbol = x.Value.Symbol
# if x.Value.Invested: # self.Portfolio[opt].Invested, but no need for self.Securities.ContainsKey(opt)
# only liquidate valuable options, otherwise let them quietly expiry
# if self.Securities[x.Key].AskPrice > 0.05: self.Liquidate(x.Key)
# CHECK if this necessary (incorporated above)
if self.Portfolio[self.equity_symbol].Invested:
self.Liquidate(self.equity.Symbol)
def OnData(self, slice):
if self.IsWarmingUp: return
if not self.HourMinuteIs(10, 1): return ##trade once a day max
# choose ITM contracts
#contracts = [x for x in call if call.UnderlyingLastPrice - x.Strike > 0]
# or choose ATM contracts
#contracts = sorted(optionchain, key = lambda x: abs(optionchain.Underlying.Price - x.Strike))[0]
# or choose OTM contracts
#contracts = [x for x in call if call.UnderlyingLastPrice - x.Strike < 0]
# sort the contracts by their expiration dates
#contracts = sorted(contracts, key = lambda x:x.Expiry, reverse = True)
# 1. deal with any early assignments
#if self._assignedOption:
# close everything
# for x in self.Portfolio:
# if x.Value.Invested: self.Liquidate(x.Key)
self._assignedOption = False
# self.call, self.put = None, None # stop getting Greeks
# 2. sell options, if none
if not self.Portfolio.Invested or self.Portfolio.GetBuyingPower(self.tkr) > self.Portfolio.TotalPortfolioValue * self.single_trade_allocation:
# select contract
#self.Log("get contracts")
self.get_contracts(slice)
if not self.put: return
# trade
#self.Securities[self.tkr].Holdings.MarginRemaining
unit_price = self.put.Strike * d.Decimal(100.0)
#unit_price2 = self.put.UnderlyingLastPrice * d.Decimal(100.0)
#unit_price = self.Securities[self.equity_symbol].Price * d.Decimal(100.0) # share price x 100
qnty = int((self.Portfolio.GetBuyingPower(self.tkr) * self.single_trade_allocation) / unit_price)
#q2 = int((self.Portfolio.GetBuyingPower(self.tkr) * .5) / unit_price)
#qnty = min(q1, q2) #never use more than 50% of remaining buy power
#bp = str(self.Portfolio.GetBuyingPower(self.tkr))
#tv = str(self.Portfolio.TotalPortfolioValue)
#mr = str(self.Portfolio.MarginRemaining)
#mu = str(self.Portfolio.TotalMarginUsed)
#cash = str(self.Portfolio.Cash) #settled only
#u_cash = str(self.Portfolio.UnsettledCash) #unsettled only
#blah = str(self.CalculateOrderQuantity(self.tkr, .2))
##fail
#maxBpParam = GetMaximumOrderQuantityForTargetBuyingPowerParameters(self.Portfolio, self.Securities[self.equity_symbol], d.Decimal(20), False)
#maxq = int(self.Portfolio.GetMaximumOrderQuantityForTargetBuyingPower(maxBpParam).Quantity)
#
#self.Log("unit_price " + str(unit_price))
#self.Log("qty " + str(qnty))
# call_exists, put_exists = self.call is not None, self.put is not None
if self.call is not None and self.Portfolio[self.tkr].Invested:
ccnt = self.Portfolio[self.tkr].Invested.Quantity / 100
self.Debug("Selling call " + str(ccnt) + "@" + str(self.call.Strike))
self.Sell(self.call.Symbol, ccnt) # self.MarketOrder(self.call.Symbol, -qnty)
if self.put is not None and qnty > 0:
self.Debug("Selling puts " + str(qnty) + "@" + str(unit_price))
order = self.MarketOrder(self.put.Symbol, -qnty)
# 3. delta-hedged any existing option
#if self.Portfolio.Invested and self.HourMinuteIs(10, 1):
# self.get_greeks(slice)
# if abs(self.previous_delta - self.Delta) > self.delta_threshold:
# self.Log("delta_hedging: self.call {}, self.put {}, self.Delta {}" .format(self.call, self.put, self.Delta))
# self.SetHoldings(self.equity_symbol, self.Delta)
# self.previous_delta = self.Delta
def get_contracts(self, slice):
"""
Get ATM call and put
"""
for kvp in slice.OptionChains:
if kvp.Key != self.option_symbol: continue
if not self.HourMinuteIs(10, 1): continue
optionchain = kvp.Value # option contracts for each 'subscribed' symbol/key
calls = [x for x in optionchain if x.Right == 0]
self.call = calls[0] if calls else None
# self.Log("delta call {}, self.call type {}" .format(self.call.Greeks.Delta, type(self.call)))
# self.Log("implied vol {} " .format(self.call.ImpliedVolatility))
#self.Debug(str(calls))
#self.Debug(str(self.call))
#self.Log("min delt " + str(self.MIN_DELTA))
#self.Log("max delt " + str(self.MAX_DELTA))
puts = [x for x in optionchain if x.Right == 1 and abs(x.Greeks.Delta) >= self.MIN_DELTA and abs(x.Greeks.Delta) <= self.MAX_DELTA]
#df = pd.DataFrame([[x.Right, float(x.Strike), x.Expiry, float(x.BidPrice), float(x.AskPrice), x.Greeks.Delta, x.Greeks.Theta] for x in optionchain],
# index=[x.Symbol.Value for x in optionchain],
# columns=['type(call 0, put 1)', 'strike', 'expiry', 'ask', 'bid', 'delta', 'theta'])
#put_frame = pd.DataFrame([[float(x.Strike), x.Expiry, float(x.BidPrice), float(x.AskPrice), x.Greeks.Delta, x.Greeks.Theta] for x in puts],
# index=[x.Symbol.Value for x in puts],
# columns=[ 'strike', 'expiry', 'ask', 'bid', 'delta', 'theta'])
#self.Log("spy close " + str(self.Securities[self.tkr].Close))
#self.Log(str(put_frame))
#for kvp in slice.OptionChains:
# if kvp.Key != self.option_symbol: continue
# chain = kvp.Value # option contracts for each 'subscribed' symbol/key
# spot_price = chain.Underlying.Price
# self.Log("spot_price {}" .format(spot_price))
# prefer to do in steps, rather than a nested sorted
##
##TEN / DEL *AKA* PRE / (DTE * DEL)
##
# 1. get shortest expiry
contracts_by_T = sorted(puts, key = lambda x: x.Expiry, reverse = True)
if not contracts_by_T: return
self.expiry = contracts_by_T[-1].Expiry.date() # shortest expiry
self.last_trading_day = last_trading_day(self.expiry)
# get contracts with shortest expiry and sort them by strike
slice_T = [i for i in puts if i.Expiry.date() == self.expiry]
sorted_contracts = sorted(slice_T, key = lambda x: x.Strike, reverse = False)
# self.Log("Expiry used: {} and shortest {}" .format(self.expiry, contracts_by_T[-1].Expiry.date()) )
# 2b. get the ATM closest put to short
#puts = [i for i in sorted_contracts \
# if i.Right == OptionRight.Put and i.Strike <= spot_price]
self.put = puts[0] if puts else None
#self.Log("found contract: " + str(self.put))
def get_greeks(self, slice):
"""
Get greeks for invested option: self.call and self.put
"""
if (self.call is None) or (self.put is None): return
for kvp in slice.OptionChains:
if kvp.Key != self.option_symbol: continue
chain = kvp.Value # option contracts for each 'subscribed' symbol/key
traded_contracts = filter(lambda x: x.Symbol == self.call.Symbol or
x.Symbol == self.put.Symbol, chain)
if not traded_contracts: self.Log("No traded cointracts"); return
deltas = [i.Greeks.Delta for i in traded_contracts]
# self.Log("Delta: {}" .format(deltas))
self.Delta=sum(deltas)
# self.Log("Vega: " + str([i.Greeks.Vega for i in contracts]))
# self.Log("Gamma: " + str([i.Greeks.Gamma for i in contracts]))
#.IncludeWeeklys()
def UniverseFunc(self, universe):
return universe.IncludeWeeklys()\
.Strikes(self.k_filter_low, self.k_filter_high)\
.Expiration(timedelta(self.MIN_EXPIRY), timedelta(self.MAX_EXPIRY))
# ----------------------------------------------------------------------
# Other ancillary fncts
# ----------------------------------------------------------------------
def OnOrderEvent(self, orderEvent):
# self.Log("Order Event -> {}" .format(orderEvent))
pass
def TimeIs(self, day, hour, minute):
return self.Time.day == day and self.Time.hour == hour and self.Time.minute == minute
def HourMinuteIs(self, hour, minute):
return self.Time.hour == hour and self.Time.minute == minute
def CustomSecurityInitializer(self, security):
if security.Type == SecurityType.Option:
security.MarginModel = OptionMarginModel()
class MyPCM(InsightWeightingPortfolioConstructionModel):
def CreateTargets(self, algorithm, insights):
targets = super().CreateTargets(algorithm, insights)
return [PortfolioTarget(x.Symbol, x.Quantity*algorithm.Securities[x.Symbol].Leverage) for x in targets]
class OptionMarginModel:
def __init__(self):
optionMarginRequirement = 1;
nakedPositionMarginRequirement = 0.1
nakedPositionMarginRequirementOTM = 0.2
def Initialize(self):
pass
def GetLeverage(security):
return 1
def SetLeverage(security, leverage):
return
# ----------------------------------------------------------------------
# all_symbols = [ x.Value for x in self.Portfolio.Keys ]
# all_invested = [x.Symbol.Value for x in self.Portfolio.Values if x.Invested ]
# for kvp in self.Securities: symbol = kvp.Key; security = kvp.Value
#
# orders = self.Transactions.GetOrders(None)
# for order in orders: self.Log("order symbol {}" .format(order.Symbol))
#
# volatility = self.Securities[self.equity_symbol].VolatilityModel.Volatility
# self.Log("Volatility: {}" .format(volatility))
# set our strike/expiry filter for this option chain# ------------------------------------------------------------------------------
# Business days
# ------------------------------------------------------------------------------
from datetime import timedelta #, date
from pandas.tseries.holiday import (AbstractHolidayCalendar, # inherit from this to create your calendar
Holiday, nearest_workday, # to custom some holidays
#
USMartinLutherKingJr, # already defined holidays
USPresidentsDay, # " " " " " "
GoodFriday,
USMemorialDay, # " " " " " "
USLaborDay,
USThanksgivingDay # " " " " " "
)
class USTradingCalendar(AbstractHolidayCalendar):
rules = [
Holiday('NewYearsDay', month=1, day=1, observance=nearest_workday),
USMartinLutherKingJr,
USPresidentsDay,
GoodFriday,
USMemorialDay,
Holiday('USIndependenceDay', month=7, day=4, observance=nearest_workday),
USLaborDay,
USThanksgivingDay,
Holiday('Christmas', month=12, day=25, observance=nearest_workday)
]
# TODO: to be tested
def last_trading_day(expiry):
# American options cease trading on the third Friday, at the close of business
# - Weekly options expire the same day as their last trading day, which will usually be a Friday (PM-settled), [or Mondays? & Wednesdays?]
#
# SPX cash index options (and other cash index options) expire on the Saturday following the third Friday of the expiration month.
# However, the last trading day is the Thursday before that third Friday. Settlement price Friday morning opening (AM-settled).
# http://www.daytradingbias.com/?p=84847
dd = expiry # option.ID.Date.date()
# if expiry on a Saturday (standard options), then last trading day is 1d earlier
if dd.weekday() == 5:
dd -= timedelta(days=1) # dd -= 1 * BDay()
# check that Friday is not an holiday (e.g. Good Friday) and loop back
while USTradingCalendar().holidays(dd, dd).tolist(): # if list empty (dd is not an holiday) -> False
dd -= timedelta(days=1)
return dd