| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports
from AlgorithmImports import *
# endregion
class FormalAsparagusBadger(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2022, 10, 3)
self.SetEndDate(2022, 10, 4)
self.SetCash(100000) # Set Strategy Cash
self.symbol = self.AddEquity("SPY", Resolution.Minute).Symbol
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 1), self._PrintPrice)
self.opening_prices = pd.Series()
self.lookback = 5
self.day = -1
#self.SetWarmup(self.lookback, Resolution.Daily)
def _PrintPrice(self):
self.Log(str(self.Time) +' '+'print price')
self.Log(str(self.Time) +' '+'spy open is : '+str(self.Securities['SPY'].Open))
def OnData(self, data: Slice):
if self.day != data.Time.day and self.symbol in data.Bars:
self.day = data.Time.day
# Save opening price
self.opening_prices.loc[data.Time.date()] = data[self.symbol].Open
self.opening_prices = self.opening_prices[-self.lookback:]