| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
from SimpleLinearRegressionChannel import SimpleLinearRegressionChannel
import collections
#import sys as sys
class SimpleLinearRegressionChannelAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 12, 9)
self.SetEndDate(2021, 12, 9)
self.SetCash(100000)
self.pair = self.AddCfd("US30USD", Resolution.Minute, Market.Oanda).Symbol
self.slrc = SimpleLinearRegressionChannel(self, 30, 30, 2.0)
self.slrcB = SimpleLinearRegressionChannel(self, 60, 60, 2.0)
self.linRegWindow = collections.deque(maxlen=60)
self.Consolidate(self.pair, timedelta(minutes=60), self.OnDataHour)
self.SetWarmUp(self.slrc.WarmUpPeriod, Resolution.Minute)
def OnDataHour(self, data):
if len(self.linRegWindow) == 60:
for i in self.linRegWindow:
self.slrcB.Update(i)
def OnData(self, data):
if data.ContainsKey(self.pair) and data[self.pair] is not None:
self.linRegWindow.append(data[self.pair])
else:
return
if not self.slrcB.IsReady:
return
# Since our indicator is ready, we can use it to compare the current bar with the simple linear regression projection.
(low, mid, high) = self.slrcB.GetProjection()
bar = data[self.pair]
#self.Debug(f"first: {self.slrc._base_window[-1]} latest:{self.slrc._base_window[0]}")
#self.Debug(sys.version)
#Plot points
self.Plot("Pricing", "Price", bar.Close)
self.Plot("Pricing", "LowerChannel", low)
self.Plot("Pricing", "LinearReg-Extension", mid)
self.Plot("Pricing", "HigherChannel", high)
self.Plot("CE", "CorrelationCoefficient", self.slrcB.GetCorrelationCoefficient())
#self.Debug(f"({low}, {mid}, {high})")
from collections import deque
from statistics import stdev
class SimpleLinearRegressionChannel(PythonIndicator):
def __init__(self, algorithm: QCAlgorithm, base_period: int, projection_period: int, channel_width: float):
super().__init__()
assert base_period > 0, f"{self.__init__.__qualname__}: base_period must be greater than 0."
assert projection_period > 0, f"{self.__init__.__qualname__}: projection_period must be greater than 0."
assert channel_width >= 0.0, f"{self.__init__.__qualname__}: channel_width must be greater than or equal to 0.0."
if base_period < 10:
algorithm.Log(f"Warning - {self.__init__.__qualname__}: base_period is less than 10. This is very few data points to compute a simple linear regression.")
self._algorithm = algorithm
self._base_period = base_period
self._x = list(range(1, base_period + 1))
self._x_sum = sum(self._x)
self._x_mean = self._x_sum / base_period
self._diffs_x_mean = [(x_i - self._x_mean) for x_i in self._x]
self._B1_den = sum(pow(x_i, 2) for x_i in self._diffs_x_mean)
self._projection_period = projection_period
self._channel_width = channel_width
self._stdev = None
self.Value = None
self._base_window = deque(maxlen=base_period)
self._B0 = None
self._B1 = None
self._projection_window = deque(maxlen=projection_period)
self._R_den_x = (base_period * sum(pow(x_i, 2) for x_i in self._x)) - pow(self._x_sum, 2)
self.WarmUpPeriod = base_period
@property
def IsReady(self):
return (len(self._base_window) == self._base_window.maxlen) and (len(self._projection_window) >= 1)
def Update(self, _input):
if len(self._base_window) != self._base_window.maxlen:
self._base_window.append(_input.Close)
else:
projection_size = len(self._projection_window)
if projection_size == 0:
self._simple_linreg()
if projection_size != self._projection_window.maxlen:
self._projection_window.append(_input.Close)
else:
self.Reset(_input)
def _simple_linreg(self):
y_mean = sum(self._base_window) / self._base_period
B1_num = sum((x_j * y_j) for x_j, y_j in zip(self._diffs_x_mean, [(y_i - y_mean) for y_i in self._base_window]))
self._B1 = B1_num / self._B1_den
self._B0 = y_mean - (self._B1 * self._x_mean)
self._stdev = stdev(self._base_window)
def Reset(self, _input = None):
#self._algorithm.Log(f"first: {self._base_window[0]} latest: {self._base_window[-1]}") #displays close 2x behind (first @ 4:00 = 3:00)
#self._algorithm.Log(f"data: {self._base_window} END")
self._base_window.clear()
if self._base_period > self._projection_period:
self._base_window.extend(self._projection_window)
if _input is not None:
self._base_window.append(_input.Close)
self._projection_window.clear()
else:
while (len(self._projection_window) > 0) and (len(self._base_window) != self._base_window.maxlen):
self._base_window.append(self._projection_window.popleft())
if len(self._base_window) == self._base_window.maxlen:
self._simple_linreg()
if _input is not None:
self._projection_window.append(_input.Close)
else:
if _input is not None:
self._base_window.append(_input.Close)
def HardReset(self, _input = None):
self._base_window.clear()
if _input is not None:
self._base_window.append(_input.Close)
self._projection_window.clear()
def GetSlope(self):
if self.IsReady:
return self._B1
else:
return None
def GetProjection(self):
if self.IsReady:
x = self._base_period + len(self._projection_window)
y = self._B0 + (self._B1 * x)
channel = self._channel_width * self._stdev
return (y - channel, y, y + channel)
else:
return (None, None, None)
def GetCorrelationCoefficient(self):
if self.IsReady:
num = (self._base_period * sum((x_i * y_i) for x_i, y_i in zip(self._x, self._base_window))) - (self._x_sum * sum(self._base_window))
den = math.sqrt(self._R_den_x * ((self._base_period * sum(pow(y_i, 2) for y_i in self._base_window)) - pow(sum(self._base_window), 2)))
return num / den
else:
return None