| Overall Statistics |
|
Total Trades 61 Average Win 15.28% Average Loss -3.14% Compounding Annual Return 29.515% Drawdown 19.400% Expectancy 4.481 Net Profit 3343.171% Sharpe Ratio 1.809 Probabilistic Sharpe Ratio 98.240% Loss Rate 7% Win Rate 93% Profit-Loss Ratio 4.87 Alpha 0.29 Beta 0.196 Annual Standard Deviation 0.174 Annual Variance 0.03 Information Ratio 0.783 Tracking Error 0.235 Treynor Ratio 1.61 Total Fees $2313.50 Estimated Strategy Capacity $1300000.00 Lowest Capacity Asset TLT SGNKIKYGE9NP |
"""
Based on 'In & Out' strategy by Peter Guenther 4 Oct 2020
expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, Thomas Chang,
Derek Melchin (QuantConnect), Nathan Swenson, and Goldie Yalamanchi.
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/p1
"""
# Import packages
import numpy as np
import pandas as pd
import scipy as sc
from scipy import stats
class InOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1) # Set Start Date
self.cap = 100000
self.SetCash(self.cap) # Set Strategy Cash
res = Resolution.Minute
# Holdings
### 'Out' holdings and weights
self.HLD_OUT = {self.AddEquity('TLT', res).Symbol: 1} #TLT; TMF for 3xlev
### 'In' holdings and weights (static stock selection strategy)
self.HLD_IN = {self.AddEquity('QQQ', res).Symbol: 1} #SPY or QQQ; TQQQ for 3xlev
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('QQQ', res).Symbol # market; QQQ
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC # vs industrials
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.USDX, self.DEBT, self.MRKT]
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU]
self.pairlist = ['G_S', 'U_I']
# Initialize constants and variables
self.INI_WAIT_DAYS, self.lookback, self.be_in, self.dcount, self.outday, self.portf_val = [15, 252*5, [1], 0, 0, [self.cap]]
# [out for 3 trading weeks, set period for returns sample, 'In'/'out' indicator, count of total days since start, dcount when self.be_in=0, portfolio value]
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('QQQ', 120),
self.inout_check)
# Symbols for charts
self.SPY = self.AddEquity('SPY', res).Symbol
self.QQQ = self.MRKT
# Setup daily consolidation
symbols = list(set(self.SIGNALS + [self.MRKT] + self.FORPAIRS + list(self.HLD_OUT.keys()) + list(self.HLD_IN.keys()) + [self.SPY] + [self.QQQ]))
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
self.history = self.History(symbols, self.lookback, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
self.update_history_shift()
# Benchmarks for charts
self.benchmarks = [self.history[self.SPY].iloc[-2], self.history[self.QQQ].iloc[-2]]
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-self.lookback:]
self.update_history_shift()
def update_history_shift(self):
self.history_shift = self.history.rolling(11, center=True).mean().shift(60)
def inout_check(self):
if self.history.empty: return
# Load saved dcount and outday (for live interruptions):
if (self.dcount==0) and (self.outday==0) and (self.ObjectStore.ContainsKey('OS_counts')):
OS_counts = self.ObjectStore.ReadBytes('OS_counts')
OS_counts = pickle.loads(bytearray(OS_counts))
self.dcount, self.outday = [OS_counts['dcount'], OS_counts['outday']]
# Returns sample to detect extreme observations
returns_sample = (self.history / self.history_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
# Extreme observations; statistical significance = 5%
extreme_b = returns_sample.iloc[-1] < np.nanpercentile(returns_sample, 5, axis=0)
# Re-assess/disambiguate double-edged signals
abovemedian = returns_sample.iloc[-1] > np.nanmedian(returns_sample, axis=0)
### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal
extreme_b.loc[self.DEBT] = np.where((extreme_b.loc[self.DEBT].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[self.DEBT])
# Determine whether 'in' or 'out' of the market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in.append(0)
self.outday = self.dcount
if self.dcount >= self.outday + self.INI_WAIT_DAYS:
self.be_in.append(1)
# Swap to 'out' assets if applicable
if not self.be_in[-1]:
self.trade({**dict.fromkeys(self.HLD_IN, 0), **self.HLD_OUT})
if self.be_in[-1] and self.Time.weekday()==4:
self.trade({**self.HLD_IN, **dict.fromkeys(self.HLD_OUT, 0)})
self.charts(extreme_b)
self.dcount += 1
# Save data: day counts from live trading for interruptions (note: backtest saves data at the end so that it's available for live trading).
if self.LiveMode: self.SaveData_Counts()
def charts(self, extreme_b):
# Market comparisons
spy_perf = self.history[self.SPY].iloc[-1] / self.benchmarks[0] * self.cap
qqq_perf = self.history[self.QQQ].iloc[-1] / self.benchmarks[1] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
self.Plot('Strategy Equity', 'QQQ', qqq_perf)
# Signals
self.Plot("In Out", "in_market", self.be_in[-1])
self.Plot("Signals", "PRDC", int(extreme_b[self.SIGNALS + self.pairlist][0]))
self.Plot("Signals", "METL", int(extreme_b[self.SIGNALS + self.pairlist][1]))
self.Plot("Signals", "NRES", int(extreme_b[self.SIGNALS + self.pairlist][2]))
self.Plot("Signals", "USDX", int(extreme_b[self.SIGNALS + self.pairlist][3]))
self.Plot("Signals", "DEBT", int(extreme_b[self.SIGNALS + self.pairlist][4]))
self.Plot("Signals", "G_S", int(extreme_b[self.SIGNALS + self.pairlist][5]))
self.Plot("Signals", "U_I", int(extreme_b[self.SIGNALS + self.pairlist][6]))
# Comparison of out returns
self.portf_val.append(self.Portfolio.TotalPortfolioValue)
if not self.be_in[-1] and len(self.be_in)>=2:
period = np.where(np.array(self.be_in)[:-1] != np.array(self.be_in)[1:])[0][-1] - len(self.be_in)
mrkt_ret = self.history[self.MRKT].iloc[-1] / self.history[self.MRKT].iloc[period] - 1
strat_ret = self.portf_val[-1] / self.portf_val[period] - 1
strat_vs_mrkt = round(float(strat_ret - mrkt_ret), 4)
else: strat_vs_mrkt = 0
self.Plot('Out return', 'PF vs MRKT', strat_vs_mrkt)
def trade(self, weight_by_sec):
# sort: execute largest sells first, largest buys last
hold_wt = {k: (self.Portfolio[k].Quantity*self.Portfolio[k].Price)/self.Portfolio.TotalPortfolioValue for k in self.Portfolio.Keys}
order_wt = {k: weight_by_sec[k] - hold_wt.get(k, 0) for k in weight_by_sec}
weight_by_sec = {k: weight_by_sec[k] for k in dict(sorted(order_wt.items(), key=lambda item: item[1]))}
for sec, weight in weight_by_sec.items():
# Check that we have data in the algorithm to process a trade
if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None:
continue
# Only trade if holdings fundamentally change
cond1 = (weight==0) and self.Portfolio[sec].IsLong
cond2 = (weight>0) and not self.Portfolio[sec].Invested
if cond1 or cond2:
self.SetHoldings(sec, weight)
def SaveData_Counts(self):
counts = {"dcount": self.dcount, "outday": self.outday}
self.ObjectStore.SaveBytes('OS_counts', pickle.dumps(counts))