| Overall Statistics |
|
Total Trades 731 Average Win 1.45% Average Loss -0.81% Compounding Annual Return 29.635% Drawdown 26.000% Expectancy 0.223 Net Profit 91.403% Sharpe Ratio 1.311 Probabilistic Sharpe Ratio 61.152% Loss Rate 56% Win Rate 44% Profit-Loss Ratio 1.78 Alpha 0.284 Beta -0.085 Annual Standard Deviation 0.201 Annual Variance 0.04 Information Ratio 0.078 Tracking Error 0.305 Treynor Ratio -3.08 Total Fees $777.05 Estimated Strategy Capacity $190000000.00 Lowest Capacity Asset ROKU WO9FGTL2I89X |
class UnicornLove(QCAlgorithm):
# This strategy will look at 3 days worth of price data
# If today's close price is higher than the last 2 day's high price....and
# The RSI is lower than 80
# We will setHoldings @ 50% and take profit after 6% in our favor. Stop loss at 2% loss.
def Initialize(self):
self.SetStartDate(2019, 1, 1)
self.SetEndDate(2021, 7, 1)
self.SetCash(100000)
# Define custom set of stocks here:
self.a = 'ROKU'
self.b = 'FB'
self.c = 'AMZN'
self.d = 'GOOG'
self.e = 'MSFT'
self.StocksSetA = [self.a, self.b, self.c, self.d, self.e]
self.AddEquity(self.a, Resolution.Daily)
self.AddEquity(self.b, Resolution.Daily)
self.AddEquity(self.c, Resolution.Daily)
self.AddEquity(self.d, Resolution.Daily)
self.AddEquity(self.e, Resolution.Daily)
# Aim to benchmark against the S&P500 index
self.SetBenchmark('SPY')
# Adding an RSI indicator
self.a_rsi = self.RSI(self.a, 14)
self.b_rsi = self.RSI(self.b, 14)
self.c_rsi = self.RSI(self.c, 14)
self.d_rsi = self.RSI(self.d, 14)
self.e_rsi = self.RSI(self.e, 14)
# Create all the custom variables you will be using here
self.a_initial_close = None
self.a_yesterday_close = None
self.a_today_close = None
self.b_initial_close = None
self.b_yesterday_close = None
self.b_today_close = None
self.c_initial_close = None
self.c_yesterday_close = None
self.c_today_close = None
self.d_initial_close = None
self.d_yesterday_close = None
self.d_today_close = None
self.e_initial_close = None
self.e_yesterday_close = None
self.e_today_close = None
def OnData(self, data):
StocksA = self.StocksSetA
# price = data[STOCKSYM].Close /Open/High/Low/Volume
for element in StocksA:
# Sequence to capture the _close price for stock array number 0
self.a_initial_close = self.a_yesterday_close
self.a_yesterday_close = self.a_today_close
self.a_today_close = data[StocksA[0]].Close
# Sequence to capture the _close price for stock array number 1
self.b_initial_close = self.b_yesterday_close
self.b_yesterday_close = self.b_today_close
self.b_today_close = data[StocksA[1]].Close
# Sequence to capture the _close price for stock array number 2
self.c_initial_close = self.c_yesterday_close
self.c_yesterday_close = self.c_today_close
self.c_today_close = data[StocksA[2]].Close
# Sequence to capture the _close price for stock array number 3
self.d_initial_close = self.d_yesterday_close
self.d_yesterday_close = self.d_today_close
self.d_today_close = data[StocksA[3]].Close
# Sequence to capture the _close price for stock array number 4
self.e_initial_close = self.e_yesterday_close
self.e_yesterday_close = self.e_today_close
self.e_today_close = data[StocksA[4]].Close
if self.a_rsi.IsReady and self.b_rsi.IsReady and self.c_rsi.IsReady and self.d_rsi.IsReady and self.e_rsi.IsReady:
# This is the test condition to ensure that we have at least 3 days worth of data before executing trades
if self.a_initial_close == None or self.b_initial_close == None or self.c_initial_close == None or self.d_initial_close == None or self.e_initial_close == None:
return
# Testing Code
if not self.Portfolio[StocksA[0]].Invested and \
self.a_today_close > (self.a_yesterday_close + self.a_initial_close) / 2 and \
self.a_rsi.Current.Value <= 75:
self.SetHoldings(StocksA[0], 0.20)
self.a_entry_price = data[StocksA[0]].Close
if not self.Portfolio[StocksA[1]].Invested and \
self.b_today_close > (self.b_yesterday_close + self.b_initial_close) / 2 and \
self.b_rsi.Current.Value <= 75:
self.SetHoldings(StocksA[1], 0.20)
self.b_entry_price = data[StocksA[1]].Close
if not self.Portfolio[StocksA[2]].Invested and \
self.c_today_close > (self.c_yesterday_close + self.c_initial_close) / 2 and \
self.c_rsi.Current.Value <= 75:
self.SetHoldings(StocksA[2], 0.20)
self.c_entry_price = data[StocksA[2]].Close
if not self.Portfolio[StocksA[3]].Invested and \
self.d_today_close > (self.d_yesterday_close + self.d_initial_close) / 2 and \
self.d_rsi.Current.Value <= 75:
self.SetHoldings(StocksA[3], 0.20)
self.d_entry_price = data[StocksA[3]].Close
if not self.Portfolio[StocksA[4]].Invested and \
self.e_today_close > (self.e_yesterday_close + self.e_initial_close) / 2 and \
self.e_rsi.Current.Value <= 75:
self.SetHoldings(StocksA[4], 0.20)
self.e_entry_price = data[StocksA[4]].Close
# I will close the position if the market moves 2% in the wrong direction
# I will take profit after the market moves 6% in my favor
if self.Portfolio[StocksA[0]].Invested:
if data[StocksA[0]].Close >= 1.06 * self.a_entry_price:
self.Liquidate(StocksA[0])
elif data[StocksA[0]].Close <= 0.98 * self.a_entry_price:
self.Liquidate(StocksA[0])
if self.Portfolio[StocksA[1]].Invested:
if data[StocksA[1]].Close >= 1.06 * self.b_entry_price:
self.Liquidate(StocksA[1])
elif data[StocksA[1]].Close <= 0.98 * self.b_entry_price:
self.Liquidate(StocksA[1])
if self.Portfolio[StocksA[2]].Invested:
if data[StocksA[2]].Close >= 1.06 * self.c_entry_price:
self.Liquidate(StocksA[2])
elif data[StocksA[2]].Close <= 0.98 * self.c_entry_price:
self.Liquidate(StocksA[2])
if self.Portfolio[StocksA[3]].Invested:
if data[StocksA[3]].Close >= 1.06 * self.d_entry_price:
self.Liquidate(StocksA[3])
elif data[StocksA[3]].Close <= 0.98 * self.d_entry_price:
self.Liquidate(StocksA[3])
if self.Portfolio[StocksA[4]].Invested:
if data[StocksA[4]].Close >= 1.06 * self.e_entry_price:
self.Liquidate(StocksA[4])
elif data[StocksA[4]].Close <= 0.98 * self.e_entry_price:
self.Liquidate(StocksA[4])
def OnEndOfAlgorithm(self):
self.Debug('Total stock value is ' + str(self.Portfolio.TotalPortfolioValue))
self.Debug('Total unrealized profit is ' + str(self.Portfolio.TotalUnrealizedProfit))