| Overall Statistics |
|
Total Trades 733 Average Win 2.20% Average Loss -0.75% Compounding Annual Return 25.782% Drawdown 21.900% Expectancy 0.995 Net Profit 1844.376% Sharpe Ratio 1.285 Probabilistic Sharpe Ratio 73.458% Loss Rate 49% Win Rate 51% Profit-Loss Ratio 2.92 Alpha 0.219 Beta 0.08 Annual Standard Deviation 0.176 Annual Variance 0.031 Information Ratio 0.525 Tracking Error 0.246 Treynor Ratio 2.819 Total Fees $923.02 |
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
# import statsmodels.api as sm
class InOutWithFundamentalFactorAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1) #Set Start Date
#self.SetEndDate(2020, 12, 1)
self.cap = 12000
self.SetCash(self.cap)
res = Resolution.Minute
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
#self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC # vs industrials
self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF)
self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD)
self.AddEquity("TLT", Resolution.Minute)
self.MKT = self.AddEquity('SPY', Resolution.Minute).Symbol
self.spy = []
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU]
#self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX]
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.USDX]
# Initialize variables
## 'In'/'out' indicator
self.be_in = 999 #initially, set to an arbitrary value different from 1 (in) and 0 (out)
## Day count variables
self.dcount = 0 # count of total days since start
self.outday = 0 # dcount when self.be_in=0
## Flexi wait days
self.WDadjvar = self.INI_WAIT_DAYS
# Setup daily consolidation
symbols = self.SIGNALS + [self.MRKT] + self.FORPAIRS
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
self.lookback = 252
self.history = self.History(symbols, self.lookback, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
self.update_history_shift()
self.UniverseSettings.Resolution = Resolution.Minute
self.AddUniverse(self.MomentumSelectionFunction, self.FundamentalSelectionFunction)
self.num_screener = 100
self.num_stocks = 10
self.formation_days = 70
self.lowmom = False
# rebalance the universe selection once a month
self.rebalence_flag = 0
# make sure to run the universe selection at the start of the algorithm even it's not the manth start
self.flip_flag = 0
self.first_month_trade_flag = 1
self.trade_flag = 0
self.symbols = None
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_out_of_the_market
)
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.BeforeMarketClose('SPY', 0),
self.record_vars
)
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-self.lookback:]
self.update_history_shift()
def update_history_shift(self):
self.history_shift = self.history.rolling(11, center=True).mean().shift(60)
def rebalance_when_out_of_the_market(self):
returns_sample = (self.history / self.history_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU])
self.pairlist = ['G_S', 'U_I', 'C_A']
# Extreme observations; statist. significance = 1%
pctl_b = np.nanpercentile(returns_sample, 1, axis=0)
extreme_b = returns_sample.iloc[-1] < pctl_b
# Determine waitdays empirically via safe haven excess returns, 50% decay
self.WDadjvar = int(
max(0.50 * self.WDadjvar,
self.INI_WAIT_DAYS * max(1,
np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1)
))
)
adjwaitdays = min(60, self.WDadjvar)
# self.Debug('{}'.format(self.WDadjvar))
# Determine whether 'in' or 'out' of the market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in = False
self.outday = self.dcount
self.SetHoldings("TLT", 1, True)
self.Debug(str(extreme_b[self.SIGNALS + self.pairlist]))
self.Log(str(extreme_b[self.SIGNALS + self.pairlist]))
#self.Log("BE OUT to TLT " + str(self.Time))
#self.Log("BE OUT dcount:" + str(self.dcount))
#self.Log("BE OUT outday:" + str(self.outday))
#self.Log("BE OUT adjwaitdays:" + str(adjwaitdays))
#self.Log("BE OUT outday + adjwaitdays:" + str(self.outday + adjwaitdays))
#self.Debug("Be OUT TRIGGERED: " + str(self.Time))
#self.Plot("Be Out", "dcount", self.dcount)
#self.Plot("Be Out", "outday", self.outday)
#self.Plot("Be Out", "adjwaitdays", adjwaitdays)
#self.Plot("Be Out", "outday + adjwaitdays", self.outday + adjwaitdays)
if self.dcount >= self.outday + adjwaitdays:
#So this logic is best put as: we are about to flip the be_in to TRUE
#so right before that do the rebalance otherwise everyday it be_in is true it will try to rebalance
if not self.be_in:
self.flip_flag = 1
self.rebalance()
self.flip_flag = 0
self.be_in = True
#self.Debug("Be IN TRIGGERED: " + str(self.Time))
self.dcount += 1
self.Plot("In Out", "in_market", int(self.be_in))
self.Plot("In Out", "num_out_signals", extreme_b[self.SIGNALS + self.pairlist].sum())
self.Plot("Wait Days", "waitdays", adjwaitdays)
def MomentumSelectionFunction(self, momentum):
#self.Debug(str(self.Time) + "MomentumSelectionFunction: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
if (self.rebalence_flag or self.first_month_trade_flag) and (self.be_in or self.flip_flag):
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in momentum if (x.HasFundamentalData) and (float(x.Price) > 5)]
# rank the stocks by dollar volume
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [ x.Symbol for x in filtered[:200]]
else:
return self.symbols
def FundamentalSelectionFunction(self, fundamental):
#self.Debug(str(self.Time) + "FundamentalSelectionFunction: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
if (self.rebalence_flag or self.first_month_trade_flag) and (self.be_in or self.flip_flag):
hist = self.History([i.Symbol for i in fundamental], 1, Resolution.Daily)
try:
filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)
and float(x.EarningReports.BasicAverageShares.ThreeMonths) * hist.loc[str(x.Symbol)]['close'][0] > 2e9]
except:
filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)]
top = sorted(filtered_fundamental, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:self.num_screener]
self.symbols = [x.Symbol for x in top]
self.rebalence_flag = 0
self.first_month_trade_flag = 0
self.trade_flag = 1
return self.symbols
else:
return self.symbols
def rebalance(self):
self.rebalence_flag = 1
#self.Debug(str(self.Time) + "rebalance: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
spy_hist = self.History([self.MRKT], 120, Resolution.Daily).loc[str(self.MRKT)]['close']
if self.Securities[self.MRKT].Price < spy_hist.mean():
self.SetHoldings("TLT", 1, True)
self.Log("Rebalance to TLT")
if self.symbols is None: return
chosen_df = self.calc_return(self.symbols)
chosen_df = chosen_df.iloc[:self.num_stocks]
self.existing_pos = 0
add_symbols = []
for symbol in self.Portfolio.Keys:
if symbol.Value == 'SPY': continue
if (symbol.Value not in chosen_df.index):
self.SetHoldings(symbol, 0)
elif (symbol.Value in chosen_df.index):
self.existing_pos += 1
weight = 0.99/len(chosen_df)
for symbol in chosen_df.index:
#self.AddEquity(symbol)
self.SetHoldings(Symbol.Create(symbol, SecurityType.Equity, Market.USA), weight)
def calc_return(self, stocks):
hist = self.History(stocks, self.formation_days, Resolution.Daily)
current = self.History(stocks, 1, Resolution.Minute)
self.price = {}
ret = {}
for symbol in stocks:
if str(symbol) in hist.index.levels[0] and str(symbol) in current.index.levels[0]:
self.price[symbol.Value] = list(hist.loc[str(symbol)]['close'])
self.price[symbol.Value].append(current.loc[str(symbol)]['close'][0])
for symbol in self.price.keys():
ret[symbol] = (self.price[symbol][-1] - self.price[symbol][0]) / self.price[symbol][0]
df_ret = pd.DataFrame.from_dict(ret, orient='index')
df_ret.columns = ['return']
sort_return = df_ret.sort_values(by = ['return'], ascending = self.lowmom)
return sort_return
def record_vars(self):
hist = self.History(self.MKT, 2, Resolution.Daily)['close'].unstack(level= 0).dropna()
self.spy.append(hist[self.MKT].iloc[-1])
spy_perf = self.spy[-1] / self.spy[0] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue