| Overall Statistics |
|
Total Trades 149 Average Win 0.49% Average Loss -0.30% Compounding Annual Return 19.242% Drawdown 6.200% Expectancy 0.954 Net Profit 23.276% Sharpe Ratio 1.829 Probabilistic Sharpe Ratio 80.034% Loss Rate 26% Win Rate 74% Profit-Loss Ratio 1.64 Alpha 0.165 Beta -0.015 Annual Standard Deviation 0.088 Annual Variance 0.008 Information Ratio -0.746 Tracking Error 0.171 Treynor Ratio -10.505 Total Fees $149.00 Estimated Strategy Capacity $580000.00 Lowest Capacity Asset SEB R735QTJ8XC9X |
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Data import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from System.Collections.Generic import List
from QuantConnect.Data.UniverseSelection import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from QuantConnect.Data.UniverseSelection import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from itertools import groupby
from math import ceil
class MeanReversionAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 6, 6) # Set Start Date
self.globalResolution = Resolution.Daily
self.initialcash = 100000
self.SetCash(self.initialcash) # Set Strategy Cash
# Add SPY to set scheduled events
self.AddEquity("SPY", self.globalResolution)
# Setting Universe
self.UniverseSettings.Resolution = self.globalResolution
self.SetUniverseSelection(QC500UniverseSelectionModel())
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
# - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
self.UniverseSettings.Resolution = self.globalResolution
#self.AddUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction))
self.AddUniverse(self.CoarseSelectionFunction)
self.numberOfSymbolsFine = 500
self._changes = None
self.dollarVolumeBySymbol = {}
#self.AutomaticIndicatorWarmUp=True
self.SetWarmup(200, Resolution.Daily)
self.dataDict = {}
self.dataDictBoughtSymbols = {}
self.verboseLogging = False
self.selections = []
self.lastMonth = -1
self.AddEquity("SHY")
# schedule an event to fire every trading day for a security the
# time rule here tells it to fire 5 minutes after SPY's market open
#self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 5), self.EveryDayAfterMarketOpen)
# schedule an event to fire every trading day for a security the
# time rule here tells it to fire 10 minutes before SPY's market close
self.Schedule.On(self.DateRules.EveryDay("SPY"),self.TimeRules.BeforeMarketClose("SPY", 10),self.EveryDayBeforeMarketClose)
self.Schedule.On(self.DateRules.MonthStart("SPY",0),self.TimeRules.AfterMarketOpen("SPY"),self.buy)
def EveryDayAfterMarketOpen(self):
[self.SetHoldings(symbol, 0) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested and symbol not in self.selections]
for symbol in self.selections:
if self.Portfolio[symbol].Invested is False:
self.SetHoldings(symbol, 0.1)
if can_trade_SHY:
self.SetHoldings("SHY",1-len(self.selections)/10)
can_trade_SHY = False
def buy(self):
[self.SetHoldings(symbol, 0) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested and symbol not in self.selections]
if len(self.selections)==0:
return
if len(self.selections) < 10:
'''
for i in range(10-len(self.selections),10):
self.Debug("Buying SHY from")
self.Debug(10-len(self.selections))
self.selections.append("SHY")
'''
self.selections.extend(["SHY" for i in range(10-len(self.selections),10)])
self.Debug("symbols we are going to buy")
for i in self.selections:
self.Debug(i)
for symbol in self.selections:
if self.Portfolio[symbol].Invested is False:
self.SetHoldings(symbol, 0.1)
def EveryDayBeforeMarketClose(self):
values = [x for x in self.dataDict.values()]
values_rsi_higher_than_55 = [x for x in values if x.RSI_NOT_OK]
symbols = [x for x in values_rsi_higher_than_55]
for x in symbols:
if x.symbol in self.selections:
self.Debug("Liquidating due to 2 period RSI higher than 95 Symbol "+str(x.symbol)+ " Current RSI "+str(x.RSI))
self.Liquidate(x.symbol)
self.selections.remove(x.symbol)
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
CoarseWithFundamental = [x for x in coarse if x.HasFundamentalData and x.Price > 5]
for i in CoarseWithFundamental:
if i.Symbol not in self.dataDict:
self.dataDict[i.Symbol] = SymbolData(i.Symbol)
self.dataDict[i.Symbol].update(i.EndTime, i.AdjustedPrice)
if self.Time.month == self.lastMonth:
return self.Universe.Unchanged
self.lastMonth = self.Time.month
values = [x for x in self.dataDict.values()]
values.sort(key=lambda x: x.STD, reverse=True)
finally_filtered = values[:10]
if self.verboseLogging and len(finally_filtered) > 0:
self.Debug("filter --------> Top 10 by Standard Deviation")
for i in finally_filtered:
self.Debug(str(i.symbol)+" Current Standard Deviation "+str(i.STD))
if self.verboseLogging:
self.Debug(' coarse # of stocks {}'.format(len(finally_filtered)))
if len(finally_filtered) == 0:
return self.Universe.Unchanged
# some filtering
self.selections = [x.symbol for x in finally_filtered]
return self.selections
def FineSelectionFunction(self, fine):
sortedBySector = sorted([x for x in fine if x.CompanyReference.CountryId == "USA"
and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"]
and (self.Time - x.SecurityReference.IPODate).days > 180
and x.SecurityReference.IsPrimaryShare
and x.MarketCap > 5e8],
key = lambda x: x.CompanyReference.IndustryTemplateCode)
count = len(sortedBySector)
# If no security has met the QC500 criteria, the universe is unchanged.
# A new selection will be attempted on the next trading day as self.lastMonth is not updated
if count == 0:
return self.Universe.Unchanged
# Update self.lastMonth after all QC500 criteria checks passed
self.lastMonth = self.Time.month
return [x.Symbol for x in sortedBySector]
def OnData(self, slice):
'''
#Take profit logic
if self.Portfolio.Invested:
if self.Portfolio.TotalPortfolioValue > self.initialcash* 1.05:# means a 5% take profit target, if the initial portfolio value is 100000 with 1.05 you will take profit when the value of portfolio is greater than 105 000 $.
self.Liquidate()
'''
#Stop loss logic
if self.Portfolio.Invested:
if self.Portfolio.TotalPortfolioValue < self.initialcash*0.70: # means a 30% stop loss. In this case 0.9 means that the portfolio is valued a 90% of the original value, so if the initial value is 100 000 $ it means 90 000$, a 10% stop loss. if you set self.initialcash*0.5 means a 50% stop loss and so on.
self.Liquidate()
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self._changes = changes
#self.Log(f"OnSecuritiesChanged({self.UtcTime}):: {changes}")
class SymbolData(object):
def __init__(self, symbol):
self.symbol = symbol
self.History = RollingWindow[float](126)# you can't change this
self.STD = StandardDeviation(126)
self.RSI = RelativeStrengthIndex(2)
self.RSI_OK = False
self.RSI_NOT_OK = False
self.currentPrice = 0
def update(self, time, value):
self.History.Add(float(value))
self.STD.Update(time,value)
self.RSI.Update(time, value)
self.currentPrice=value
self.RSI_OK = self.RSI.IsReady and self.RSI.Current.Value < 10
self.RSI_NOT_OK = self.RSI.IsReady and self.RSI.Current.Value > 95