| Overall Statistics |
|
Total Trades 32596 Average Win 0.00% Average Loss 0.00% Compounding Annual Return 21.094% Drawdown 3.500% Expectancy 0.208 Net Profit 6.833% Sharpe Ratio 1.572 Probabilistic Sharpe Ratio 61.736% Loss Rate 61% Win Rate 39% Profit-Loss Ratio 2.09 Alpha 0.168 Beta -0.099 Annual Standard Deviation 0.112 Annual Variance 0.012 Information Ratio 1.076 Tracking Error 0.233 Treynor Ratio -1.777 Total Fees $33201.08 |
from datetime import timedelta
from QuantConnect.Data.UniverseSelection import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from Alphas.RsiAlphaModel import RsiAlphaModel
from Alphas.MacdAlphaModel import MacdAlphaModel
from itertools import groupby
from math import ceil
class LiquidValueStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2015, 8, 17)
self.SetEndDate(2015,12,20)
# No need to set End Date as the final submission will be tested
# up until the review date
# Set $1m Strategy Cash to trade significant AUM
self.SetCash(1000000)
# Add a relevant benchmark, with the default being SPY
self.AddEquity('SPY')
self.SetBenchmark('SPY')
# On the Average Cross Chart we want 2 series, slow MA and fast MA
# avgCross = Chart("Rank")
# avgCross.AddSeries(Series("High Rank", SeriesType.Line, 0))
# self.AddChart(avgCross)
# Use the Alpha Streams Brokerage Model, developed in conjunction with
# funds to model their actual fees, costs, etc.
# Please do not add any additional reality modelling, such as Slippage, Fees, Buying Power, etc.
self.SetBrokerageModel(AlphaStreamsBrokerageModel())
self.UniverseSettings.Resolution = Resolution.Daily
self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x)))
self.AddUniverseSelection(QC500UniverseSelectionModel())
self.AddAlpha(MacdAlphaModel(12, 26, 9, MovingAverageType.Simple, Resolution.Daily))
self.AddAlpha(RsiAlphaModel(15, Resolution.Daily))
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetRiskManagement(NullRiskManagementModel())
self.SetExecution(ImmediateExecutionModel())
self.SetWarmUp(300, Resolution.Daily)
class QC500UniverseSelectionModel(FundamentalUniverseSelectionModel):
'''Defines the QC500 universe as a universe selection model for framework algorithm
For details: https://github.com/QuantConnect/Lean/pull/1663'''
def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None):
'''Initializes a new default instance of the QC500UniverseSelectionModel'''
super().__init__(filterFineData, universeSettings, securityInitializer)
self.numberOfSymbolsCoarse = 1000
self.numberOfSymbolsFine = 500
self.dollarVolumeBySymbol = {}
self.lastMonth = -1
def SelectCoarse(self, algorithm, coarse):
'''Performs coarse selection for the QC500 constituents.
The stocks must have fundamental data
The stock must have positive previous-day close price
The stock must have positive volume on the previous trading day'''
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0],
key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]
self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume}
# If no security has met the QC500 criteria, the universe is unchanged.
# A new selection will be attempted on the next trading day as self.lastMonth is not updated
if len(self.dollarVolumeBySymbol) == 0:
return Universe.Unchanged
# return the symbol objects our sorted collection
return list(self.dollarVolumeBySymbol.keys())
def SelectFine(self, algorithm, fine):
'''Performs fine selection for the QC500 constituents
The company's headquarter must in the U.S.
The stock must be traded on either the NYSE or NASDAQ
At least half a year since its initial public offering
The stock's market cap must be greater than 500 million'''
sortedBySector = sorted([x for x in fine if x.CompanyReference.CountryId == "USA"
and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"]
and (algorithm.Time - x.SecurityReference.IPODate).days > 180
and x.MarketCap > 5e8],
key = lambda x: x.CompanyReference.IndustryTemplateCode)
count = len(sortedBySector)
# If no security has met the QC500 criteria, the universe is unchanged.
# A new selection will be attempted on the next trading day as self.lastMonth is not updated
if count == 0:
return Universe.Unchanged
# Update self.lastMonth after all QC500 criteria checks passed
self.lastMonth = algorithm.Time.month
percent = self.numberOfSymbolsFine / count
sortedByDollarVolume = []
# select stocks with top dollar volume in every single sector
for code, g in groupby(sortedBySector, lambda x: x.CompanyReference.IndustryTemplateCode):
y = sorted(g, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse = True)
c = ceil(len(y) * percent)
sortedByDollarVolume.extend(y[:c])
sortedByDollarVolume = sorted(sortedByDollarVolume, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True)
return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]