| Overall Statistics |
|
Total Orders 23 Average Win 2.64% Average Loss -2.68% Compounding Annual Return 1.780% Drawdown 21.200% Expectancy 0.117 Start Equity 100000 End Equity 112248.9 Net Profit 12.249% Sharpe Ratio 0.077 Sortino Ratio 0.087 Probabilistic Sharpe Ratio 0.539% Loss Rate 44% Win Rate 56% Profit-Loss Ratio 0.99 Alpha 0.013 Beta -0.098 Annual Standard Deviation 0.093 Annual Variance 0.009 Information Ratio -0.245 Tracking Error 0.228 Treynor Ratio -0.073 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset NIFTY.Nifty 2S Portfolio Turnover 0.50% Drawdown Recovery 3 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
### <summary>
### This demonstration imports indian NSE index "NIFTY" as a tradable security in addition to the USDINR currency pair. We move into the
### NSE market when the economy is performing well.
### </summary>
### <meta name="tag" content="strategy example" />
### <meta name="tag" content="using data" />
### <meta name="tag" content="custom data" />
class CustomDataNIFTYAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2008, 1, 8)
self.set_end_date(2014, 7, 25)
self.set_cash(100000)
# Define the symbol and "type" of our generic data:
rupee = self.add_data(DollarRupee, "USDINR", Resolution.DAILY).symbol
nifty = self.add_data(Nifty, "NIFTY", Resolution.DAILY).symbol
self.settings.automatic_indicator_warm_up = True
rupee_sma = self.sma(rupee, 20)
nifty_sma = self.sma(rupee, 20)
self.minimum_correlation_history = 50
self.today = CorrelationPair()
self.prices = []
def on_data(self, data):
if data.contains_key("USDINR"):
self.today = CorrelationPair(self.time)
self.today.currency_price = data["USDINR"].close
if not data.contains_key("NIFTY"):
return
self.today.nifty_price = data["NIFTY"].close
# Add to price history if both prices are available and valid
if self.today.nifty_price > 0 and self.today.currency_price > 0:
self.prices.append(self.today)
if len(self.prices) > self.minimum_correlation_history:
self.prices.pop(0)
# Strategy - only execute on Wednesdays
if self.time.weekday() != 2:
return
if len(self.prices) < self.minimum_correlation_history:
return
cur_qnty = self.portfolio["NIFTY"].quantity
quantity = int(self.portfolio.margin_remaining * 0.9 / data["NIFTY"].close)
hi_nifty = max(price.nifty_price for price in self.prices)
lo_nifty = min(price.nifty_price for price in self.prices)
if data["NIFTY"].open >= hi_nifty:
self.order("NIFTY", quantity - cur_qnty)
elif data["NIFTY"].open <= lo_nifty:
self.order("NIFTY", -quantity - cur_qnty)
class Nifty(PythonData):
'''NIFTY Custom Data Class'''
def get_source(self, config, date, is_live_mode):
source = "https://www.dropbox.com/s/rsmg44jr6wexn2h/CNXNIFTY.csv?dl=1"
return SubscriptionDataSource(source, SubscriptionTransportMedium.REMOTE_FILE)
def reader(self, config, line, date, is_live_mode):
# Skip empty lines or header
if not (line.strip() and line[0].isdigit()):
return None
try:
# Example File Format:
# Date, Open High Low Close Volume Turnover
# 2011-09-13 7792.9 7799.9 7722.65 7748.7 116534670 6107.78
data = line.split(',')
# Create new Nifty object
index = Nifty()
index.symbol = config.symbol
index.time = datetime.strptime(data[0], "%Y-%m-%d")
index.end_time = index.time + timedelta(days=1)
index.value = float(data[4])
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
return index
except (ValueError, IndexError):
return None
class DollarRupee(PythonData):
'''Dollar Rupe is a custom data type we create for this algorithm'''
def get_source(self, config, date, is_live_mode):
return SubscriptionDataSource("https://www.dropbox.com/s/m6ecmkg9aijwzy2/USDINR.csv?dl=1", SubscriptionTransportMedium.REMOTE_FILE)
def reader(self, config, line, date, is_live_mode):
if not (line.strip() and line[0].isdigit()):
return None
try:
data = line.split(',')
# Create new USDINR object
currency = DollarRupee()
currency.symbol = config.symbol
currency.time = datetime.strptime(data[0], "%Y-%m-%d")
currency.end_time = currency.time + timedelta(days=1)
currency.value = float(data[1])
currency["Close"] = float(data[1])
return currency
except (ValueError, IndexError):
return None
class CorrelationPair:
'''Correlation Pair is a helper class to combine two data points which we'll use to perform the correlation.'''
def __init__(self, date_time=None):
self.nifty_price = 0 # Nifty price for this correlation pair
self.currency_price = 0 # Currency price for this correlation pair
self._date = date_time if date_time else datetime.min
def date(self):
return self._date.date()