| Overall Statistics |
|
Total Trades 36 Average Win 0.38% Average Loss -0.08% Compounding Annual Return 189.789% Drawdown 1.100% Expectancy 2.128 Net Profit 3.158% Sharpe Ratio 15.425 Probabilistic Sharpe Ratio 97.679% Loss Rate 44% Win Rate 56% Profit-Loss Ratio 4.63 Alpha 1.735 Beta -0.066 Annual Standard Deviation 0.107 Annual Variance 0.011 Information Ratio 1.883 Tracking Error 0.149 Treynor Ratio -24.746 Total Fees $0.00 |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import *
from datetime import timedelta
import pandas as pd
from io import StringIO
import datetime
class main(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020,7,27) # Set Start Date
self.SetEndDate(2020,12,31)# Set End Date
self.SetCash(100000) # Set Strategy Cash
# If using dropbox remember to add the &dl=1 to trigger a download
csv = self.Download("https://www.dropbox.com/s/2hlxb85lo7y10i3/test.csv?dl=1")
# read file (which needs to be a csv) to a pandas DataFrame. include following imports above
self.df = pd.read_csv(StringIO(csv))
self.SetExecution(ImmediateExecutionModel())
self.AveragePrice = None
for i in range(len(self.df)) :
self.security=str(self.df.iloc[i,0]).replace(" ", "")
#self.quantity=self.df.iloc[i,1]
self.AddEquity(self.security,Resolution.Minute).SetDataNormalizationMode(DataNormalizationMode.Raw)
############## SLIPPAGE & FEE MODEL####################################################################
self.Securities[self.security].FeeModel = ConstantFeeModel(0)
self.Securities[self.security].SlippageModel = ConstantSlippageModel(0)
''' let's first solve the problem above of linking the buy and liquidate action to the proper financial instrument
## CODE TO TRIGGER STOP LOSSES AND TAKE PROFITS
def OnData(self, slice):
if not slice.Bars.ContainsKey(self.security): return
if self.AveragePrice != None :
if (slice[self.security].Price > self.AveragePrice * self.df.iloc[0,2]):
self.Liquidate(self.security," TAKE PROFIT @ " + str(slice[self.security].Price) +" AverageFillPrice " +str(self.AveragePrice))
if (slice[self.security].Price < self.AveragePrice * self.df.iloc[0,3]):
self.Liquidate(self.security," STOP LOSS @ " + str(slice[self.security].Price) +" AverageFillPrice " +str(self.AveragePrice))
'''
def OnData(self, slice):
for i in range(len(self.df)):
if slice.Time.hour==self.df.iloc[i,4] and slice.Time.minute==self.df.iloc[i,5]:
self.MarketOrder(str(self.df.iloc[i,0]).replace(" ", ""),self.df.iloc[i,1])
self.AveragePrice = self.Portfolio[str(self.df.iloc[i,0]).replace(" ", "")].AveragePrice
for i in range(len(self.df)):
if slice.Time.hour==self.df.iloc[i,6] and slice.Time.minute==self.df.iloc[i,7]:
self.Liquidate(str(self.df.iloc[i,0]).replace(" ", ""))