| Overall Statistics |
|
Total Trades 179 Average Win 1.38% Average Loss -0.85% Compounding Annual Return 14.600% Drawdown 10.300% Expectancy 0.270 Net Profit 21.330% Sharpe Ratio 1.099 Loss Rate 52% Win Rate 48% Profit-Loss Ratio 1.63 Alpha -0.002 Beta 7.309 Annual Standard Deviation 0.103 Annual Variance 0.011 Information Ratio 0.946 Tracking Error 0.103 Treynor Ratio 0.016 Total Fees $331.15 |
import clr
import decimal as d
import pandas as pd
class FuturesMovingAverageCrossOverExample2(QCAlgorithm):
def Initialize(self):
self.contract = None
self.SetStartDate(2018, 1, 1) #Set Start Date
self.SetEndDate(2019, 6, 1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.SetWarmUp(TimeSpan.FromDays(5)) # Set warm up
self.SetTimeZone('America/Los_Angeles') # Set timezone
self.new_day = True
self.reset = True
# Risk management
# Subscribe and set our expiry filter for the futures chain
futureES = self.AddFuture(Futures.Indices.SP500EMini)
futureES.SetFilter(TimeSpan.Zero, TimeSpan.FromDays(360))
# Indicators
self.slow_sma = None
self.slow_sma_period = 50
self.fast_sma = None
self.fast_sma_period = 18
def OnData(self, slice):
if not self.InitUpdateContract(slice):
return
# Reset any open positions based on a contract rollover.
if self.reset:
self.reset = False
self.Log('RESET: closing all positions')
self.Liquidate()
def InitUpdateContract(self, slice):
# Reset daily - everyday we check whether futures need to be rolled
if not self.new_day:
return True
if self.contract != None and (self.contract.Expiry - self.Time).days >= 3: # rolling 3 days before expiry
return True
for chain in slice.FutureChains.Values:
# When selecting contract, if on expiry date then skip first as it would be the same one.
idx = 0
if self.contract != None:
self.Log('Expiry days away {} - {}'.format((self.contract.Expiry-self.Time).days, self.contract.Expiry))
if self.contract != None and (self.contract.Expiry - self.Time).days < 3:
idx = 1
contracts = list(chain.Contracts.Values)
chain_contracts = list(contracts) #[contract for contract in chain]
chain_contracts = sorted(chain_contracts, key=lambda x: x.Expiry)
if len(chain_contracts) < 2:
return False
first = chain_contracts[idx]
second = chain_contracts[idx+1]
if (first.Expiry - self.Time).days >= 3:
self.contract = first
elif (first.Expiry - self.Time).days < 3 and (second.Expiry - self.Time).days >= 3:
self.contract = second
self.Log("Setting contract to: {}".format(self.contract.Symbol.Value))
self.new_day = False
self.reset = True
# Set up consolidators.
one_hour = TradeBarConsolidator(TimeSpan.FromMinutes(60))
one_hour.DataConsolidated += self.OnHour
self.SubscriptionManager.AddConsolidator(self.contract.Symbol, one_hour)
# Set up indicators.
self.slow_sma = self.SMA(self.contract.Symbol, self.slow_sma_period, Resolution.Hour)
self.fast_sma = self.SMA(self.contract.Symbol, self.fast_sma_period, Resolution.Hour)
history = self.History(self.contract.Symbol, 50*60, Resolution.Minute).reset_index(drop=False)
for bar in history.itertuples():
if bar.time.minute == 0 and ((self.Time-bar.time)/pd.Timedelta(minutes=1)) >= 2:
self.slow_sma.Update(bar.time, bar.close)
self.fast_sma.Update(bar.time, bar.close)
return True
return False
def OnHour(self, sender, bar):
if (self.slow_sma != None and self.slow_sma.IsReady and self.fast_sma != None and self.fast_sma.IsReady):
if bar.Symbol == self.contract.Symbol:
price = bar.Close
holdings = self.Portfolio[self.contract.Symbol].Quantity
if holdings <= 0:
# Go long
if self.fast_sma > self.slow_sma:
self.Log("BUY >> {}".format(price))
self.MarketOrder(self.contract.Symbol, 1)
if holdings > 0 and self.fast_sma < self.slow_sma:
self.Log("SELL >> {}".format(price))
self.Liquidate()
else:
self.Log('SMAs not ready yet')
def OnEndOfDay(self):
self.new_day = True