| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -6.603 Tracking Error 0.079 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
#1. Import Tiingo Data
from QuantConnect.Data.Custom.Tiingo import *
from datetime import datetime, timedelta
import numpy as np
class TiingoNewsSentimentAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2016, 11, 1)
self.SetEndDate(2017, 3, 1)
#2. Add AAPL and NKE symbols to a Manual Universe
symbols = [Symbol.Create("AAPL", SecurityType.Equity, Market.USA),
Symbol.Create("NKE", SecurityType.Equity, Market.USA)]
self.SetUniverseSelection(ManualUniverseSelectionModel(symbols))
# 3. Add an instance of the NewsSentimentAlphaModel
self.SetAlpha(NewsSentimentAlphaModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetExecution(ImmediateExecutionModel())
self.SetRiskManagement(NullRiskManagementModel())
# 4. Create a NewsSentimentAlphaModel class with Update() and OnSecuritiesChanged() methods
class NewsSentimentAlphaModel(AlphaModel):
def __init__(self):
pass
def Update(self, algorithm, data):
insights = []
return insights
def OnSecuritiesChanged(self, algorithm, changes):
pass