| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.298 Tracking Error 0.122 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# Four ways to get the normalized ATR
import numpy as np
import pandas as pd
# -----------------------------
STOCK = "SPY"; ATR_PERIOD = 14;
# -----------------------------
class MuscularGreenAlbatross(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 9, 1)
self.SetEndDate(2021, 10, 7)
self.stock = self.AddEquity(STOCK, Resolution.Daily).Symbol
self.SetWarmUp(ATR_PERIOD + 1, Resolution.Daily)
self.atr = self.ATR(self.stock, ATR_PERIOD, MovingAverageType.Simple, Resolution.Daily)
self.close = self.Identity(self.stock, Resolution.Daily, Field.Close)
self.yest_close = IndicatorExtensions.Of(Delay(1), self.close)
self.atr_norm_2 = IndicatorExtensions.Over(self.atr, self.yest_close)
self.atr_norm_3 = symbolData(self, self.stock, ATR_PERIOD).atrOverPrice
def OnData(self, data):
if self.IsWarmingUp or not self.atr.IsReady or not self.atr_norm_2.IsReady: return
atr_norm_1 = float(self.atr.Current.Value / self.yest_close.Current.Value)
atr_norm_2 = float(self.atr_norm_2.Current.Value)
atr_norm_3 = float(self.atr_norm_3.Current.Value)
atr_norm_4 = float(self.atr_norm(self.stock, ATR_PERIOD))
self.Plot("ATR", "atr_norm_1", atr_norm_1)
self.Plot("ATR", "atr_norm_2", atr_norm_2)
self.Plot("ATR", "atr_norm_3", atr_norm_3)
self.Plot("ATR", "atr_norm_4", atr_norm_4)
def atr_norm(self, symbol, atr_period):
hist = self.History(symbol, atr_period + 1)
range = hist.high - hist.low
h_minus_p_close = np.abs(hist.high - hist.close.shift(1))
l_minus_p_close = np.abs(hist.low - hist.close.shift(1))
tr = [max(x,y,z) for x,y,z in zip(range, h_minus_p_close, l_minus_p_close)][1:]
atr_norm = pd.Series(tr).rolling(atr_period).mean() / hist.close[-2]
return atr_norm.values[-1]
class symbolData:
def __init__(self, algo, symbol, atr_period):
self.atr = algo.ATR(symbol, atr_period, MovingAverageType.Simple, Resolution.Daily)
self.id = algo.Identity(symbol, Resolution.Daily, Field.Close)
self.atrOverPrice = IndicatorExtensions.Over(self.atr, self.id)
history = algo.History(symbol, atr_period + 1, Resolution.Daily)
for bar in history.itertuples():
tradeBar = TradeBar(bar.Index[1], bar.Index[0], bar.open, bar.high,
bar.low, bar.close, bar.volume)
self.atr.Update(tradeBar)
history = algo.History(symbol, 2, Resolution.Daily).iloc[-2]
self.id.Update(pd.to_datetime(history.name[1]), history.close)