| Overall Statistics |
|
Total Trades 2 Average Win 0% Average Loss 0% Compounding Annual Return 9.265% Drawdown 53.900% Expectancy 0 Net Profit 477.877% Sharpe Ratio 0.503 Probabilistic Sharpe Ratio 0.552% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.103 Beta -0.1 Annual Standard Deviation 0.189 Annual Variance 0.036 Information Ratio 0.059 Tracking Error 0.269 Treynor Ratio -0.955 Total Fees $8.68 Estimated Strategy Capacity $9600000.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
import numpy as np
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="using quantconnect" />
### <meta name="tag" content="trading and orders" />
class BasicTemplateAlgorithm(QCAlgorithm):
'''Basic template algorithm simply initializes the date range and cash'''
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2001,5, 24) #Set Start Date
self.SetEndDate(2021,3,5) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY", Resolution.Daily)
self.AddEquity("QQQ", Resolution.Daily)
self.AddEquity("VTI", Resolution.Daily)
#self.Debug("numpy test >>> print numpy.pi: " + str(np.pi))
self.SetBenchmark("SPY")
#self.SetBenchmark("QQQ")
mainChart = Chart("Equity Curve With Benchmark")
mainChart.AddSeries(Series("Equity Curve", SeriesType.Candle, 0))
mainChart.AddSeries(Series("Benchmark", SeriesType.Line, 0))
self.AddChart(mainChart)
self.scale = None
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
if self.scale == None:
self.scale = 100000 / data["SPY"].Price
if not self.Portfolio.Invested:
self.SetHoldings("SPY", 0.5)
self.SetHoldings("QQQ", 0.5)
#self.SetHoldings("VTI", 1)
self.Plot("Equity Curve With Benchmark", "Equity Curve", self.Portfolio.TotalPortfolioValue)
self.Plot("Equity Curve With Benchmark", "Benchmark", self.Benchmark.Evaluate(self.Time) * self.scale)