| Overall Statistics |
|
Total Orders 913 Average Win 1.91% Average Loss -0.45% Compounding Annual Return 9.849% Drawdown 63.500% Expectancy 1.502 Start Equity 100000 End Equity 577154.48 Net Profit 477.154% Sharpe Ratio 0.32 Sortino Ratio 0.353 Probabilistic Sharpe Ratio 0.068% Loss Rate 53% Win Rate 47% Profit-Loss Ratio 4.28 Alpha 0.043 Beta 1.244 Annual Standard Deviation 0.256 Annual Variance 0.066 Information Ratio 0.295 Tracking Error 0.171 Treynor Ratio 0.066 Total Fees $4488.85 Estimated Strategy Capacity $1000000.00 Lowest Capacity Asset ERUS URI1LRYQ5ISL Portfolio Turnover 0.74% |
#region imports
from AlgorithmImports import *
#endregion
class ValueEffectWithinCountries(QCAlgorithm):
def initialize(self):
self.set_start_date(2000, 1, 8) # Set Start Date
self.set_end_date(2018, 9, 1) # Set End Date
self.set_cash(100000) # Set Strategy Cash
self._symbol = self.add_data(CAPE, "CAPE", Resolution.DAILY).symbol
self._symbols = Symbols().tickers
for key, value in self._symbols.items():
self.add_equity(value[1], Resolution.DAILY)
def on_data(self, data):
if data.contains_key(self._symbol):
cape = {}
for key, value in self._symbols.items():
if not self.securities[value[1]].price:
continue
cape[value[1]] = data[self._symbol].get_property(key)
sorted_cape = sorted(cape, key=lambda x: cape[x])
# invests the cheapest 33% of countries if those countries have a CAPE below 15
lowest_cape = sorted_cape[:int(1/3*len(sorted_cape))]
long_list = [i for i in lowest_cape if cape[i] < 15]
invested = [x.key for x in self.portfolio if x.value.invested]
for i in invested:
if i.value not in long_list:
self.liquidate(i)
for i in long_list:
self.set_holdings(i, 1/len(long_list))
class CAPE(PythonData):
def get_source(self, config, date, is_live_mode):
return SubscriptionDataSource("https://indices.cib.barclays/file.app?action=shared&path=shiller/cape.csv", SubscriptionTransportMedium.REMOTE_FILE)
def reader(self, config, line, date, is_live_mode):
if not (line.strip() and line[1].replace('.', '', 1).isdigit()):
return None
try:
index = CAPE()
index.symbol = config.symbol
data = line.split(',')
index.time = datetime.strptime(data[0], "%d/%m/%Y")
symbols = Symbols().tickers
for key, value in symbols.items():
index[key] = float(data[value[0]]) if data[value[0]] else 100000 # very large number to avoid be selected
return index
except:
return None
class Symbols:
def __init__(self):
# the indiex is the country name
# the first element of the value is the column number of CAPE ratio value in custom dataset
# the second element of the value is the corresponding country ETF
self.tickers = {"Australia":[1, "EWA"], # ASX All Ordinaries Index: iShares MSCI Australia ETF
"Brazil":[2, "EWZ"], # Indice Bovespa (Ibovespa): iShares MSCI Brazil ETF
"Canada":[3, "XIC"], # S&P/TSX Composite Index: iShares S&P TSX Capped Cmpst Indx Fnd
"China":[4, "MCHI"], # SSE Composite: iShares MSCI China Index Fund
"Europe":[5, "IEUR"], # STOXX Europe 600 Index: iShares Core MSCI Europe ETF
"France":[6, "EWQ"], # CAC 40 Index: iShares MSCI France ETF
"Germany":[7, "EWG"], # HDAX Index: iShares MSCI Germany ETF
"Hong Kong":[8, "EWH"], # Hang Seng Index: iShares MSCI Hong Kong Index Fund
"Italy":[9, "EWI"], # FTSE MIB Index: iShares MSCI Italy ETF
"India":[10, "INDY"], # NIFTY 50 Index: iShares India 50 ETF
"Israel":[11, "EIS"], # Tel Aviv 125 Index: iShares MSCI Israel ETF
"Japan":[12, "EWJ"], # All Public Companies: iShares MSCI Japan ETF
"Korea":[13,"EWY"], # KOSPI Index: iShares MSCI South Korea ETF
"Mexico":[14, "EWW"], # &P/BMV IPC Index: iShares MSCI Mexico ETF
"Netherlands":[15, "EWN"], # NL 25 Index: iShares MSCI Netherlands ETF
"Poland":[16, "EPOL"], # WIG Index: iShares MSCI Poland ETF
"Russia":[17, "ERUS"], # RTS Index: iShares MSCI Russia ETF
"Singapore":[18, "EWS"], # STI Index: iShares MSCI Singapore ETF
"Southafrica":[19, "EZA"], # FTSE/JSE CAP Top 40 Index: iShares MSCI South Africa ETF
"Spain":[20, "EWP"], # IBEX 35 Index: iShares MSCI Spain ETF
"Sweden":[21, "EWD"], # OMXS 30 index: iShares MSCI Sweden ETF
"Switzerland":[22, "EWL"], # CH 20 index: iShares MSCI Switzerland ETF
"Taiwan":[23, "EWT"], # TWSE: iShares MSCI Taiwan ETF
"Turkey":[24, "TUR"], # BIST 100: iShares MSCI Turkey ETF
"UK":[25, "EWU"], # FTSE 100 Index: iShares MSCI United Kingdom ETF
"USA":[26, "SPY"] # S&P 500 Index: SPDR S&P 500 ETF
}