| Overall Statistics |
|
Total Trades 2 Average Win 15.84% Average Loss -10.27% Compounding Annual Return 3.944% Drawdown 5.900% Expectancy 0.271 Net Profit 3.94% Sharpe Ratio 0.443 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.54 Alpha 0.062 Beta -0.066 Annual Standard Deviation 0.097 Annual Variance 0.01 Information Ratio -1.583 Tracking Error 0.153 Treynor Ratio -0.654 |
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Data.Market;
using QuantConnect.Indicators;
namespace QuantConnect.Algorithm.Examples
{
/// <summary>
/// In this algorithm we'll compute/plot the ratio between coke and pepsi
/// </summary>
public class IndicatorRatioExampleAlgorithm : QCAlgorithm
{
/// <summary>
/// Our EMA of Coca cola minute close prices
/// </summary>
public Identity KO_Close;
/// <summary>
/// Our EMA of Pepsi minute close prices
/// </summary>
public Identity PEP_Close;
/// <summary>
/// Our KO/PEP ratio via minute close prices
/// </summary>
public CompositeIndicator<IndicatorDataPoint> KO_Over_PEP;
/// <summary>
/// This is an EMA of our KO_Over_PEP ratio indicator
/// </summary>
public ExponentialMovingAverage EMA_KO_Over_PEP;
/// <summary>
/// Bollinger bands of our ratio
/// </summary>
public BollingerBands BB_Ratio;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetStartDate(2013, 01, 01); //Set Start Date
SetEndDate(2014, 01, 01); //Set End Date
SetCash(100000); //Set Strategy Cash'
// Find more symbols here: http://quantconnect.com/data
AddSecurity(SecurityType.Equity, "KO", Resolution.Minute);
AddSecurity(SecurityType.Equity, "PEP", Resolution.Minute);
// the identity indicator 'lifts' values into the indicator system for usage with other
// indicators
KO_Close = Identity("KO");
PEP_Close = Identity("PEP");
// This will create a new indicator that is the ko_close divided by the pep_close
KO_Over_PEP = KO_Close.Over(PEP_Close, "Raw Ratio");
// but we want the EMA of our ratio, so make a new EMA and define it as 'of' the ratio
EMA_KO_Over_PEP = new ExponentialMovingAverage("EMA_Ratio", 1200).Of(KO_Over_PEP);
// we'll also create a bollinger band of the EMA of the ratio for plotting
BB_Ratio = new BollingerBands("BB_Ratio", 1200, 2).Of(EMA_KO_Over_PEP);
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">TradeBars IDictionary object with your stock data</param>
public void OnData(TradeBars data)
{
if (BB_Ratio.IsReady && !Portfolio.Invested)
{
MarketOrder("KO", -2000);
MarketOrder("PEP", (int)(2000 * KO_Over_PEP));
}
// plot every afternoon
if (data.Time.Hour == (3 + 12) && data.Time.Minute == 50)
{
// wait for bollinger bands to get ready
if (BB_Ratio.IsReady)
{
Plot("Ratio", EMA_KO_Over_PEP, BB_Ratio.UpperBand, BB_Ratio.LowerBand);
}
}
}
}
}