| Overall Statistics |
|
Total Trades 3625 Average Win 0.21% Average Loss -1.18% Compounding Annual Return 204.962% Drawdown 42.800% Expectancy 0.114 Net Profit 1632.368% Sharpe Ratio 1.765 Probabilistic Sharpe Ratio 94.360% Loss Rate 5% Win Rate 95% Profit-Loss Ratio 0.18 Alpha 0 Beta 0 Annual Standard Deviation 0.507 Annual Variance 0.257 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $185056.31 |
import numpy as np
import pandas as pd
from collections import deque
class QuantumOptimizedPrism(QCAlgorithm):
def Initialize(self):
'''Look back for breakout'''
self.Lookback = 175
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.SetCash(100000)
self.symbolList = ["BTCUSD","ETHUSD","LTCUSD"]
self.rollingWindow = {}
self.weights = {}
self.flashcheck = {}
for name in self.symbolList:
self.AddCrypto(name, Resolution.Hour, Market.GDAX)
self.rollingWindow["close_top_{0}".format(name)] = deque(maxlen=self.Lookback)
self.weights[name] = 1 / len(self.symbolList)
self.flashcheck[name] = 0
self.SetStartDate(2017, 5, 1)
self.SetBenchmark("BTCUSD")
self.SetWarmUp(self.Lookback)
def flashcrashcheck(self, symbol, price):
'''Check for significant price change'''
pchange = (price - self.flashcheck[symbol]) / ((price + self.flashcheck[symbol])/2) * 100
self.flashcheck[symbol] = price
if pchange >= 10:
flash = True
self.Debug("{} - FlashCrash: {}".format(self.Time, pchange))
else:
flash = False
return flash
def indicator(self, sym):
'''Rolling quantile for upper and lower bounds'''
top = pd.Series(self.rollingWindow["close_top_"+str(sym)]).quantile(0.99)
bot = pd.Series(self.rollingWindow["close_top_"+str(sym)]).quantile(0.01)
return top, bot
def OnData(self, data):
'''The data is bugged on this day for BTC'''
if self.Time.day == 10 and self.Time.month == 8 and self.Time.year == 2018:
return
for symbol in self.symbolList:
sym_price = data[symbol].Price
stop = self.flashcrashcheck(symbol, sym_price)
self.rollingWindow["close_top_{0}".format(symbol)].appendleft(sym_price)
if not self.IsWarmingUp and not stop:
top, bot = self.indicator(symbol)
if sym_price >= top:
self.SetHoldings(symbol, self.weights[symbol])
elif sym_price <= bot:
self.SetHoldings(symbol, 0)
else:
pass
def OnOrderEvent(self, orderEvent):
self.Debug("{} {}".format(self.Time, orderEvent.ToString()))
def OnEndOfAlgorithm(self):
self.Log("{} - TotalPortfolioValue: {}".format(self.Time, self.Portfolio.TotalPortfolioValue))
self.Log("{} - CashBook: {}".format(self.Time, self.Portfolio.CashBook))