| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np
import pandas as pd
class MyAlgo(QCAlgorithm):
def Initialize(self):
self.SetCash(100000)
# Start and end dates for the backtest.
self.SetStartDate(2019,9,1)
self.SetEndDate(2019,9,15)
self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol
# Schedule (3:59pm)
self.Schedule.On(self.DateRules.EveryDay("SPY"), \
self.TimeRules.At(15, 39), \
Action(self.rebalance))
def OnData(self, data):
pass
def rebalance(self):
# History (Hourly)
history = self.History(self.spy, 90, Resolution.Hour)
spy_history = history['close'].unstack(level=0)
self.Debug(str(self.Time) + " Getting Hourly SPY: " + '\n'+ str(spy_history.tail()))
# History (Minute)
min_history = self.History(self.spy, 10, Resolution.Minute)
spy_min = min_history['close'].unstack(level=0)
current_spy = spy_min.iloc[-1]
self.Debug(str(self.Time) + " Getting Minute SPY: " + '\n'+ str(spy_min.tail()))
self.Debug(str(self.Time) + " Current SPY: " + '\n'+ str(current_spy))