| Overall Statistics |
|
Total Trades 23 Average Win 1.06% Average Loss -4.78% Compounding Annual Return 6.535% Drawdown 6.700% Expectancy 0.110 Net Profit 5.998% Sharpe Ratio 0.851 Probabilistic Sharpe Ratio 42.752% Loss Rate 9% Win Rate 91% Profit-Loss Ratio 0.22 Alpha 0.038 Beta 0.087 Annual Standard Deviation 0.064 Annual Variance 0.004 Information Ratio -0.476 Tracking Error 0.291 Treynor Ratio 0.625 Total Fees $0.00 Estimated Strategy Capacity $1200000.00 Lowest Capacity Asset USDCAD 8G |
from datetime import datetime,timedelta
import numpy as np
Macdlong = None
AboveSupport = None
BelowResistance = None
class CreativeYellowTapir(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020,1, 30) # Set Start Date
self.SetEndDate(2020,12, 30)
self.SetCash(10000) # Set Strategy Cash
self.ticker = "USDCAD"
# Rolling Windows to hold bar close data keyed by symbol.
self.Data = {}
#for ticker in tickers:
symbol = self.AddForex(self.ticker, Resolution.Hour, Market.Oanda).Symbol
self.Data[symbol] = SymbolData(self, symbol)
self.tolerance = 0.0025
self.toleranceR = 0.986761994
self.toleranceS = 1.004000555
self.stopLossLevel = -0.05 # stop loss percentage
self.stopProfitLevel = 0.01# stop profit percentage
self.SetWarmUp(400, Resolution.Hour)
def OnData(self, data):
#if self.IsWarmingUp: #Data to warm up the algo is being collected.
# return
for symbol, symbolData in self.Data.items(): #Return the dictionary's key-value pairs:
if not (data.ContainsKey(symbol) and data[symbol] is not None and symbolData.IsReady):
continue
if self.IsWarmingUp or not all([symbolData.IsReady for symbolData in self.Data.values()]):
return
MACD = symbolData.macd.Current.Value
MACDfast = symbolData.macd.Fast.Current.Value
RSI = symbolData.rsi.Current.Value
current_price = data[symbol].Close#symbolData.closeWindow[0] #
signalDeltaPercent = (MACD - MACD)/MACDfast
supports = self.NextSupport(symbolData.lowWindow)
resistances = self.NextResistance(symbolData.highWindow)
#self.Log(f"Symbol: {symbol.Value} , Supports: {supports} , Resistances: {resistances}")
#Filtering through the list of supports to be able to get the next support level.
supports = sorted(supports, key= lambda x:x < current_price, reverse = True)
#Filtering through the list of resistances to be able to get the next resistance level.
resistances = sorted(resistances, key= lambda x:x > current_price, reverse = False)
#self.Log(f"Symbol: {symbol.Value} , Supports: {supports} , Resistances: {resistances}")
#Getting the next support level
nextSupportLevel = supports[0]
#Getting the next support level
nextResistanceLevel = resistances[0]
#if price is close to a support or resistance print or log that resistance as well as that price
self.Log(f"Symbol: {symbol.Value} , nextSupportLevel: {nextSupportLevel} , nextResistanceLevel: {nextResistanceLevel} ,current price:{current_price}")
if self.Portfolio[symbol].Invested:
if self.isLong:
condStopProfit = (current_price - self.buyInPrice)/self.buyInPrice > self.stopProfitLevel
condStopLoss = (current_price - self.buyInPrice)/self.buyInPrice < self.stopLossLevel
if condStopProfit:
self.Liquidate(symbol)
self.Log(f"{self.Time} Long Position Stop Profit at {current_price}")
if condStopLoss:
self.Liquidate(symbol)
self.Log(f"{self.Time} Long Position Stop Loss at {current_price}")
else:
condStopProfit = (self.sellInPrice - current_price)/self.sellInPrice > self.stopProfitLevel
condStopLoss = (self.sellInPrice - current_price)/self.sellInPrice < self.stopLossLevel
if condStopProfit:
self.Liquidate(symbol)
self.Log(f"{self.Time} Short Position Stop Profit at {current_price}")
if condStopLoss:
self.Liquidate(symbol)
self.Log(f"{self.Time} Short Position Stop Loss at {current_price}")
if not self.Portfolio[symbol].Invested:
MacdLong = signalDeltaPercent > self.tolerance
AboveSupport = current_price > nextSupportLevel * self.toleranceS
BelowResistance = current_price < nextResistanceLevel * self.toleranceR
#tolerance = will be dependent on the minimum number of pips before a r/s level
if RSI > 50 and Macdlong and BelowResistance:
self.SetHoldings(symbol, 1)
# get buy-in price for trailing stop loss/profit
self.buyInPrice = current_price
# entered long position
self.isLong = True
self.Log(f"{self.Time} Entered Long Position at {current_price}")
if RSI < 50 and not Macdlong and AboveSupport:
self.SetHoldings(symbol, -1)
# get sell-in price for trailing stop loss/profit
self.sellInPrice = current_price
# entered short position
self.isLong = False
self.Log(f"{self.Time} Entered Short Position at {current_price}")
def NextResistance(self, window, variation = 0.005, h = 3):
series = window
resistances = []
maxima = []
# finding maxima and minima by looking for hills/troughs locally
for i in range(h, series.Size-h):
if series[i] > series[i-1] and series[i] > series[i+1] and series[i+1] > series[i+2] and series[i-1] > series[i-2] :
maxima.append(series[i])
# identifying maximas which are resistances
for m in maxima:
r = m * variation
# maxima which are near each other
commonLevel = [x for x in maxima if x > m - r and x < m + r]
# if 2 or more maxima are clustered near an area, it is a resistance
if len(commonLevel) > 1:
# we pick the highest maxima if the cluster as our resistance
level = max(commonLevel)
if level not in resistances:
resistances.append(level)
return resistances
def NextSupport(self, window, variation = 0.005, h = 3):
series = window
supports = []
minima = []
# finding maxima and minima by looking for hills/troughs locally..........
for i in range(h, series.Size-h):
if series[i] < series[i-1] and series[i] < series[i+1] and series[i+1] < series[i+2] and series[i-1] < series[i-2]:
minima.append(series[i])
# identify minima which are supports
for l in minima:
r = l * variation
# minima which are near each other
commonLevel = [x for x in minima if x > l - r and x < l + r]
# if 2 or more minima are clustered near an area, it is a support.
if len(commonLevel) > 1:
# We pick the lowest minima of the cluster as our support
level = min(commonLevel)
if level not in supports:
supports.append(level)
return supports
class SymbolData:
def __init__(self, algorithm, symbol):
self.macd = MovingAverageConvergenceDivergence(12,26,9)
self.rsi = RelativeStrengthIndex(14)
self.macdWindow = RollingWindow[IndicatorDataPoint](2) #setting the Rolling Window for the fast MACD indicator, takes two values
algorithm.RegisterIndicator(symbol, self.macd, timedelta(hours=4))
self.macd.Updated += self.MacdUpdated #Updating those two values
self.rsiWindow = RollingWindow[IndicatorDataPoint](2) #setting the Rolling Window for the slow SMA indicator, takes two values
algorithm.RegisterIndicator(symbol, self.rsi, timedelta(hours=4))
self.rsi.Updated += self.RsiUpdated #Updating those two values
#self.closeWindow = RollingWindow[float](200)
self.lowWindow = RollingWindow[float](200)
self.highWindow = RollingWindow[float](200)
#Add consolidator to track rolling low prices..
self.consolidator = QuoteBarConsolidator(4)
self.consolidator.DataConsolidated += self.LowUpdated
algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
#Add consolidator to track rolling high prices
self.consolidator = QuoteBarConsolidator(4)
self.consolidator.DataConsolidated += self.HighUpdated
algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
def MacdUpdated(self, sender, updated):
'''Event holder to update the MACD Rolling Window values'''
if self.macd.IsReady:
self.macdWindow.Add(updated)
def RsiUpdated(self, sender, updated):
'''Event holder to update the RSI Rolling Window values'''
if self.rsi.IsReady:
self.rsiWindow.Add(updated)
def LowUpdated(self, sender, bar):
'''Event holder to update the low Rolling Window values'''
self.lowWindow.Add(bar.Low)
def HighUpdated(self, sender, bar):
'''Event holder to update the high Rolling Window values'''
self.highWindow.Add(bar.High)
@property
def IsReady(self):
return self.macd.IsReady and self.rsi.IsReady and self.lowWindow.IsReady and self.highWindow.IsReady