| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0.87 Tracking Error 0.125 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports
from AlgorithmImports import *
import math
# endregion
class WellDressedBrownCrocodile(QCAlgorithm):
def Initialize(self):
self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.Raw))
self.SetStartDate(2022, 12, 16)
self.SetEndDate(2023, 1, 6)
self.SetCash(100000)
self.fx = self.AddForex("EURUSD", Resolution.Hour)
self.symbol = self.fx.Symbol
self.highList = []
self.lowList = []
self.highValue = 0
self.lowValue = 0
self.pphl = self.PPHL(self.symbol, 10, 10)
self.Schedule.On(self.DateRules.EveryDay(self.symbol),
self.TimeRules.At(14, 0, 0), self.ValuesTest)
def ValuesTest(self):
self.Debug(str(len(self.highList)) + " = length of high list")
self.Debug(str(len(self.lowList)) + " = length of low list")
self.Debug(self.highValue)
self.Debug(str(self.lowValue) + " = low value")
def OnData(self, slice: Slice) -> None:
if not self.pphl.IsReady:
return
price = self.Securities[self.symbol].Price
self.highList = self.pphl.GetHighPivotPointsArray()
if len(self.highList) > 0:
self.highValue = self.highList[0]
self.lowList = self.pphl.GetLowPivotPointsArray()
if len(self.lowList) > 0:
self.lowValue = self.lowList[0]