| Overall Statistics |
|
Total Trades 172 Average Win 3.60% Average Loss -2.66% Compounding Annual Return 2.190% Drawdown 38.600% Expectancy 0.107 Net Profit 21.770% Sharpe Ratio 0.196 Loss Rate 53% Win Rate 47% Profit-Loss Ratio 1.36 Alpha -0.011 Beta 0.524 Annual Standard Deviation 0.143 Annual Variance 0.02 Information Ratio -0.343 Tracking Error 0.137 Treynor Ratio 0.053 Total Fees $886.57 |
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Data.Market import TradeBar
from datetime import datetime
class RollingWindowAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2004,10,1) #Set Start Date
self.SetEndDate(2013,11,1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY", Resolution.Daily)
# define our daily macd(12,26) with a 9 day signal
self.__macd = self.MACD("SPY", 9, 26, 9, MovingAverageType.Exponential, Resolution.Daily)
self.__previous = datetime.min
self.PlotIndicator("MACD", True, self.__macd, self.__macd.Signal)
self.PlotIndicator("SPY", self.__macd.Fast, self.__macd.Slow)
# Creates a Rolling Window indicator to keep the 2 TradeBar
self.window = RollingWindow[TradeBar](2) # For other security types, use QuoteBar
# Creates an indicator and adds to a rolling window when it is updated
#self.MACD("SPY", 9, 26, 9, MovingAverageType.Exponential, Resolution.Daily).Updated += self.MacdUpdated
self.SMA("SPY", 5).Updated += self.MacdUpdated
self.MacdWin = RollingWindow[IndicatorDataPoint,](5)
def MacdUpdated(self, sender, updated):
'''Adds updated values to rolling window'''
self.MacdWin.Add(updated)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.'''
# Add SPY TradeBar in rollling window
self.window.Add(data["SPY"])
# Wait for windows to be ready.
if not (self.window.IsReady and self.MacdWin.IsReady and self.__macd.IsReady): return
# only once per day
if self.__previous.date() == self.Time.date(): return
# define a small tolerance on our checks to avoid bouncing
tolerance = 0.0025;
holdings = self.Portfolio["SPY"].Quantity
signalDeltaPercent = (self.__macd.Current.Value - self.__macd.Signal.Current.Value)/self.__macd.Fast.Current.Value
currBar = self.window[0] # Current bar had index zero.
pastBar = self.window[1] # Past bar has index one.
self.Log("Price: {0} -> {1} ... {2} -> {3}".format(pastBar.Time, pastBar.Close, currBar.Time, currBar.Close))
currMacd = self.MacdWin[0] # Current SMA had index zero.
pastMacd = self.MacdWin[self.MacdWin.Count-1] # Oldest SMA has index of window count minus 1.
self.Log("SMA: {0} -> {1} ... {2} -> {3}".format(pastMacd.Time, pastMacd.Value, currMacd.Time, currMacd.Value))
if not self.Portfolio.Invested and currMacd.Value > pastMacd.Value:
self.SetHoldings("SPY", 1.0)
# if our macd is greater than our signal, then let's go long
if holdings <= 0 and signalDeltaPercent > tolerance: # 0.01%
# longterm says buy as well
self.SetHoldings("SPY", 1.0)
# of our macd is less than our signal, then let's go short
elif holdings >= 0 and signalDeltaPercent < -tolerance:
self.Liquidate("SPY")
self.__previous = self.Time