| Overall Statistics |
|
Total Trades 13 Average Win 3.27% Average Loss -1.84% Compounding Annual Return 14.638% Drawdown 9.800% Expectancy 0.387 Net Profit 24.150% Sharpe Ratio 0.879 Probabilistic Sharpe Ratio 40.028% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.77 Alpha 0.105 Beta 0.315 Annual Standard Deviation 0.122 Annual Variance 0.015 Information Ratio 0.613 Tracking Error 0.162 Treynor Ratio 0.34 Total Fees $0.00 Estimated Strategy Capacity $110000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 2.25% |
#region imports
from AlgorithmImports import *
from QuantConnect.DataSource import *
import datetime as dt
import pandas as pd
import numpy as np
import math
from pandas.tseries.offsets import BDay
#endregion
"""
Intersection of ROC comparison using OUT_DAY approach by Vladimir
Inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang.
Further improved by ideas from Strongs and Tim Nilson.
"""
# ------------------------------------------------------------------
# The original values. Later Optimization by TN (see below)
# STK = QQQ or QLD
# BND = TLT, UUP
# VOLA = 126; BASE_RET = 85;
LEV = 1.0;
# ------------------------------------------------------------------
# 21.4.2023 Optimal vola = 127; base_ret = 85
class DualMomentumInOut(QCAlgorithm):
def Initialize(self):
self.SetBrokerageModel(BrokerageName.QuantConnectBrokerage, AccountType.Margin)
# First date for which JJC is available is 2018, 2, 2
# If the start date is earlier, we switch from the old pairs to the new pairs on that date
# self.SetStartDate(2008, 1, 1) #original: 2008
self.SetStartDate(2022, 1, 1) # colab start
#self.SetEndDate(2021, 11, 17)
self.cap = 100000
self.SetCash(self.cap)
# Parameters
#self.VOLA = int(self.GetParameter("volatility"))
self.VOLA = 127
#self.BASE_RET = int(self.GetParameter("base"))
self.BASE_RET = 85
# Switch from original pairs to new pairs with copper and turn on the switch to use UUP if TLT is trending down
# If using start dates prior to 2018, use production_model = 1. Otherwise, use production_model = 4
self.production_model = 4
if self.LiveMode:
self.pairs_model = self.production_model # 1 = Original
else:
self.pairs_model = 1
# self.STK = self.AddEquity('QQQ', Resolution.Minute).Symbol #original: QLD
self.STK = self.AddEquity('SPY', Resolution.Minute).Symbol #original: QLD
self.BND1 = self.AddEquity('TLT', Resolution.Minute).Symbol
#self.BND2 = self.AddEquity('TMF', Resolution.Minute).Symbol
self.UUP = self.AddEquity('UUP', Resolution.Minute).Symbol # Dollar
self.SLV = self.AddEquity('SLV', Resolution.Daily).Symbol # Silver
self.GLD = self.AddEquity('GLD', Resolution.Daily).Symbol # Gold
self.XLI = self.AddEquity('XLI', Resolution.Daily).Symbol # Industrial
self.XLU = self.AddEquity('XLU', Resolution.Daily).Symbol # Utilities
self.DBB = self.AddEquity('DBB', Resolution.Daily).Symbol # Metals
self.EEM = self.AddEquity('EEM', Resolution.Daily).Symbol # Emerging Markets
#self.FXA = self.AddEquity('FXA', Resolution.Daily).Symbol
#self.FXF = self.AddEquity('FXF', Resolution.Daily).Symbol
self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol # S&P500
#self.MKT = self.AddEquity('QQQ', Resolution.Daily).Symbol # S&P500
# BNC is benchmark for equity plot. Use either self.MKT or self.STK
self.BNC = self.STK
# added UUP as an alternative to BND
self.ASSETS = [self.STK, self.BND1, self.UUP]
if self.pairs_model == 4:
self.CPR = self.AddEquity('JJC', Resolution.Daily).Symbol # Copper
self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.EEM, self.MKT, self.DBB, self.BND1, self.UUP, self.CPR]
else:
self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.EEM, self.MKT, self.DBB, self.BND1, self.UUP]
self.bull = 1
self.count = 0
self.outday = 0
self.wait_days = 0
self.wt = {}
self.real_wt = {}
self.mkt = []
self.pairs_plot = {}
# self.SetWarmUp(timedelta(350))
self.history_was_updated = False # need this when we switch over to JJC
self.email_lines = [] # store email strings for daily email
self.email_sent = False
# Add two smas of TLT to test for TLT trends
self.bnd_sma_short = self.SMA(self.BND1, 40, Resolution.Daily)
self.bnd_sma_long = self.SMA(self.BND1, 80, Resolution.Daily)
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen(self.MKT, 1), self.daily_check)
self.symbols = [self.MKT] + self.pairs + [self.BND1, self.UUP]
self.build_history(self.symbols)
def OnSecuritiesChanged(self, changes:SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-(self.VOLA + 1):]
def build_history(self, symbols):
symbols = list(set(symbols)) # to remove duplicates
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
self.history = self.History(symbols, self.VOLA + 1, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
def daily_check(self):
self.email_lines = []
# if time is past 2018, 2, 1, add JJC (Copper)
jjc_start_date = dt.datetime(2018, 2, 1, 0, 0, 0)
# if self.Time >= jjc_start_date and not self.history_was_updated:
if self.Time >= (jjc_start_date + BDay(self.VOLA+1)) and not self.history_was_updated:
if self.pairs_model != 4:
self.CPR = self.AddEquity('JJC', Resolution.Daily).Symbol # Copper
self.pairs_model = self.production_model
# update the history
self.symbols = self.symbols + [self.CPR]
self.build_history(self.symbols)
self.history_was_updated = True
# pairs switch based on TLT vs MKT
#r30 = self.history.pct_change(30).iloc[-1]
#switch_on = False
#if switch_on and (r30[self.BND1] - r30[self.MKT] > 0):
# self.pairs_model = 1
#else:
# self.pairs_model = 5
# if self.Time >= jjc_start_date:
# self.pairs_model = 4
vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252)
self.wait_days = int(vola * self.BASE_RET)
period = int((1.0 - vola) * self.BASE_RET)
r = self.history.pct_change(period).iloc[-1]
# NOTE
# Alex's ML algorithm found an alternative version of In & Out rules, below:
# exit = (row['SLV'] < row['XLI']) & (row['XLI'] < row['XLU']) & (row['EEM'] < row['XLI']) & (row['EEM'] < row['UUP'])
# Below we can test various pairs. Only 1 and 4 are now used.
# before copper etf inception = before dt.datetime(2018, 2, 1, 0, 0, 0)
if self.pairs_model == 1:
# exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP]))
exit = ((r[self.SLV] < r[self.XLI]) and (r[self.XLI] < r[self.XLU]) and (r[self.EEM] < r[self.XLI]) and (r[self.EEM] < r[self.UUP]))
# after copper etf inception = after dt.datetime(2018, 2, 1, 0, 0, 0)
elif self.pairs_model == 4:
# exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.EEM] < r[self.MKT]) and (r[self.CPR] < r[self.GLD]))
exit = ((r[self.SLV] < r[self.XLI]) and (r[self.XLI] < r[self.XLU]) and (r[self.EEM] < r[self.XLI]) and (r[self.EEM] < r[self.UUP]) and (r[self.CPR] < r[self.GLD]))
self.email_lines.append(f"C_G {round(r[self.CPR], 3)} {round(r[self.GLD], 3)} {r[self.CPR] < r[self.GLD]}")
self.pairs_plot['C_G'] = (r[self.CPR] - r[self.GLD]) * -1
# for emailed info and end of algo reporting
self.email_lines.append(f"S_G {round(r[self.SLV], 3)} {round(r[self.GLD], 3)} {r[self.SLV] < r[self.GLD]}")
self.email_lines.append(f"I_U {round(r[self.XLI], 3)} {round(r[self.XLU], 3)} {r[self.XLI] < r[self.XLU]}")
self.email_lines.append(f"E_M {round(r[self.EEM], 3)} {round(r[self.MKT], 3)} {r[self.EEM] < r[self.MKT]}")
# For pairs plot
self.pairs_plot['S_G'] = (r[self.SLV] - r[self.GLD]) * -1
self.pairs_plot['I_U'] = (r[self.XLI] - r[self.XLU]) * -1
self.pairs_plot['E_M'] = (r[self.EEM] - r[self.MKT]) * -1
self.pairs_plot['D_U'] = (r[self.DBB] - r[self.UUP]) * -1
#self.pairs_plot['DBC_M'] = (r[self.DBC] - r[self.MKT]) * -1
#self.pairs_plot['Vola'] = vola
wait_text = ""
if exit:
self.bull = False
self.outday = self.count
if self.count >= self.outday + self.wait_days:
self.bull = True
wait_text = "We are RISK ON"
if not self.bull and (self.count <= self.outday + self.wait_days):
wait_text = "Wait: " + str((self.outday + self.wait_days) - self.count)
self.email_lines.insert(0, f"Bull: {self.bull}, Exit: {exit}, {wait_text}")
self.count += 1
if not self.bull:
# choose the out holding with the highest rate of return
out_holding = self.BND1 # default
out_holdings = { self.BND1: r[self.BND1], self.UUP: r[self.UUP] }
out_holding = max(out_holdings, key=out_holdings.get)
# Then, switch to UUP if BND1 is trending down (improves the above)
if self.bnd_sma_short.Current.Value < self.bnd_sma_long.Current.Value:
out_holding = self.UUP
# if out_holding is negative, go into cash (only a very small improvement)
if r[out_holding] < 0:
out_holding = None
self.email_lines.append(f"HOLD -> {out_holding}")
for sec in self.ASSETS:
self.wt[sec] = LEV if sec is out_holding else 0
self.trade()
elif self.bull:
self.email_lines.append(f"HOLD -> {self.STK}")
for sec in self.ASSETS:
self.wt[sec] = LEV if sec is self.STK else 0
self.trade()
# Send email with insights
today = dt.datetime.now().replace(hour=0, minute=0, second=0, microsecond=0)
if self.LiveMode and self.Time >= today:
pass
#self.Notify.Email("you@gmail.com", "IN/OUT Insights", "\n".join(self.email_lines))
#self.Notify.Email("you@gmail.com", "IN/OUT Insights", "\n".join(self.email_lines))
def trade(self):
if self.IsWarmingUp:
return
# Liquidate first, then set new holdings. This avoids 'not enough funds' warnings.
for sec, weight in self.wt.items():
if weight == 0 and self.Portfolio[sec].IsLong:
self.Liquidate(sec)
for sec, weight in self.wt.items():
if weight > 0 and not self.Portfolio[sec].Invested:
self.SetHoldings(sec, weight)
def OnEndOfDay(self):
if self.IsWarmingUp:
return
if not self.LiveMode:
mkt_price = self.Securities[self.BNC].Close
# the below fixes the divide by zero error in the MKT plot
if mkt_price > 0 and mkt_price is not None:
self.mkt.append(mkt_price)
if len(self.mkt) >= 2 and not self.IsWarmingUp:
mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap
self.Plot('Strategy Equity', self.BNC, mkt_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 1))
for sec, weight in self.wt.items():
self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4)
self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))
# Pairs chart
for key, value in self.pairs_plot.items():
if math.isnan(value):
continue
self.Plot('Pairs', key, value)
# Pairs Model
self.Plot('Pairs Model', "Pairs", self.pairs_model)
# def OnEndOfAlgorithm(self):
# for line in self.email_lines:
# self.Debug(line)
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = 0.0 #parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))