| Overall Statistics |
|
Total Trades 22 Average Win 3.78% Average Loss -5.41% Compounding Annual Return 181.629% Drawdown 15.600% Expectancy 0.321 Net Profit 18.878% Sharpe Ratio 2.449 Probabilistic Sharpe Ratio 60.445% Loss Rate 22% Win Rate 78% Profit-Loss Ratio 0.70 Alpha 1.076 Beta -0.732 Annual Standard Deviation 0.581 Annual Variance 0.337 Information Ratio 1.737 Tracking Error 1.092 Treynor Ratio -1.944 Total Fees $37.63 Estimated Strategy Capacity $930000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 17.23% |
from AlgorithmImports import *
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
class TensorFlowNeuralNetworkAlgorithm(QCAlgorithm):
def Initialize(self):
#test 2018 to 2023
self.SetStartDate(2020, 2, 15) # Set Start Date
self.SetEndDate(2020, 4, 15) # Set End Date
self.SetCash(100000) # Set Strategy Cash
spy = self.AddEquity("SPY", Resolution.Daily, fillForward=False) # Add Equity
self.symbols = [spy.Symbol] # potential trading symbols pool (in this algorithm there is only 1).
#!!!Optimize for returns (7 is norm)
self.lookback = 7# number of previous days for training
self.lookbackTwo = 2 #!Second set lockback periods
# Feed in 100 days of daily data before the start date
self.SetWarmUp(timedelta(days=14), Resolution.Daily)
# Feed in data for 100 trading days before the start date
self.SetWarmUp(14, Resolution.Daily)
#Benchmark
self.SetBenchmark("SPY")
self.lastBenchmarkValue = None
self.BenchmarkPerformance = self.Portfolio.TotalPortfolioValue
#Checks if spy is traded on the day, if so proccesses NetTrain every 60mins during trading hours, Trade function initiated at end of train.
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.Every(timedelta(minutes=60)), Action(self.NetTrain)) #Lower number is better for more up to date trades(60 is good)
#self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 10), Action(self.NetTrain))#for testing speed purposes, change resolution to daily
def add_layer(self, inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
# this is one NN with only one hidden layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def NetTrain(self):
#return if warmup period in initialize is not complete
if self.IsWarmingUp: return
# Daily historical data is used to train the machine learning model
history = self.History(self.symbols, self.lookback + 1, Resolution.Daily)
# model: use prices_x to fit prices_y; key: symbol; value: according price
self.prices_x, self.prices_y = {}, {}
# key: symbol; values: prices for sell or buy
self.sell_prices, self.buy_prices = {}, {}
for symbol in self.symbols:
if not history.empty:
# Daily historical data is used to train the machine learning model
# use open prices to predict the next days'
self.prices_x[symbol] = list(history.loc[symbol.Value]['open'][:-1])
self.prices_y[symbol] = list(history.loc[symbol.Value]['open'][1:])
for symbol in self.symbols:
if symbol in self.prices_x:
# create numpy array
x_data = np.array(self.prices_x[symbol]).astype(np.float32).reshape((-1,1))
y_data = np.array(self.prices_y[symbol]).astype(np.float32).reshape((-1,1))
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = self.add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = self.add_layer(l1, 10, 1, activation_function=None)
# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
# use gradient descent and square error
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# the following is precedure for tensorflow
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for i in range(200):
# training
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
# predict today's price
y_pred_final = sess.run(prediction, feed_dict = {xs: y_data})[0][-1]
# get sell prices and buy prices as trading signals
self.sell_prices[symbol] = y_pred_final - np.std(y_data)
self.buy_prices[symbol] = y_pred_final + np.std(y_data)
# Call trade---Look into better implementation Boneyard and attempts below
#if self.Time.day % 5 == 0:
# self.Trade()
#else:
#self.Trade()
#if symbol in :
# self.Trade()
#self.Trade()
#if data.ContainsKey("SPY"):
# self.Trade()
for symbol in self.symbols:
if not history.empty:
self.Trade()
def Trade(self):
'''
Enter or exit positions based on relationship of the open price of the current bar and the prices defined by the machine learning model.
Liquidate if the open price is below the sell price and buy if the open price is above the buy price
'''
#Experiment with just selling position, shorting position, or leverageed short based on brokerage limits.
for holding in self.Portfolio.Values:
if holding.Symbol in self.CurrentSlice and self.CurrentSlice[holding.Symbol] is not None:
if self.CurrentSlice[holding.Symbol].Open < self.sell_prices[holding.Symbol]:
#self.Liquidate(holding.Symbol)
self.SetHoldings("SPY", -1)
if self.CurrentSlice[holding.Symbol].Open > self.buy_prices[holding.Symbol]:
self.SetHoldings(holding.Symbol, 1 / len(self.symbols))
#Benchmark
benchmark = self.Securities["SPY"].Close
if self.lastBenchmarkValue is not None:
self.BenchmarkPerformance = self.BenchmarkPerformance * (benchmark/self.lastBenchmarkValue)
self.lastBenchmarkValue = benchmark
self.Plot("Strategy vs Benchmark", "Portfolio Value", self.Portfolio.TotalPortfolioValue)
self.Plot("Strategy vs Benchmark", "Benchmark", self.BenchmarkPerformance)