| Overall Statistics |
|
Total Trades 207 Average Win 0.23% Average Loss -0.66% Compounding Annual Return 189.334% Drawdown 8.600% Expectancy 0.060 Net Profit 7.718% Sharpe Ratio 3.715 Probabilistic Sharpe Ratio 60.377% Loss Rate 21% Win Rate 79% Profit-Loss Ratio 0.35 Alpha 1.783 Beta 1.595 Annual Standard Deviation 0.574 Annual Variance 0.329 Information Ratio 3.439 Tracking Error 0.556 Treynor Ratio 1.336 Total Fees $234.09 |
from datetime import timedelta
import numpy as np
import pandas as pd
class ModelA(AlphaModel):
def __init__(self, resolution, insightsTimeDelta ):
self.symbolDataBySymbol = {}
self.modelResolution = resolution
self.insightsTimeDelta = insightsTimeDelta
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
symbolData = SymbolData(added.Symbol, algorithm, self.modelResolution)
self.symbolDataBySymbol[added.Symbol] = symbolData
def Update(self, algorithm, data):
insights=[]
for symbol, symbolData in self.symbolDataBySymbol.items():
symbolData.getInsight(algorithm.Securities[symbol].Price) # Latest known price; we are at 12:00 and the last trade at 10.57
algorithm.Log(f"{symbol}\tMOM\t[{symbolData.fmom}]\t{round(symbolData.mom.Current.Value,2)}\tKAMA\t[{symbolData.fkama}]\t{round(symbolData.kama.Current.Value,2)}\
\tPrice\t{symbolData.price}\tROC\t[{symbolData.froc}]\t{round(symbolData.roc.Current.Value,4)}\tEMA\t[{symbolData.fema}]\tEMA-13\t{round(symbolData.ema13.Current.Value,2)}\
\tEMA-63\t{round(symbolData.ema63.Current.Value,2)}\tEMA-150\t{round(symbolData.ema150.Current.Value,2)}\taction\t{symbolData.InsightDirection}")
insights.append(Insight(symbol, self.insightsTimeDelta, InsightType.Price, symbolData.InsightDirection, 0.0025,None, "ModelA",None))
return insights
class FrameworkAlgorithm(QCAlgorithm):
def Initialize(self):
tickers = ["MSFT","MRNA","MELI","FSLY"]
symbols = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers]
resolution = Resolution.Hour #10-11, etc Daily data is midnight to mifnight, 12AM EST
warmup = 28
insightsTimeDelta=timedelta(days=1)
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(TimeSpan.FromMinutes(60)), self.LogPortfolioDetail)
self.SetStartDate(2020, 11, 29)
self.SetCash(100000)
self.SetBenchmark("SPY")
self.UniverseSettings.Resolution = resolution
self.SetWarmUp(timedelta(warmup))
self.SetUniverseSelection(ManualUniverseSelectionModel(symbols))
self.SetAlpha(ModelA(resolution,insightsTimeDelta))
#self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetPortfolioConstruction(MeanVarianceOptimizationPortfolioConstructionModel(resolution,PortfolioBias.LongShort,1,63,resolution,0.02,MaximumSharpeRatioPortfolioOptimizer(0,1,0)))
self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.02)) # drop in profit from the max
self.SetExecution(ImmediateExecutionModel())
def LogPortfolioDetail(self):
dt=int(str(self.Time)[11:13]) # can be improved
if dt>9 and dt<18:
if self.Portfolio.Invested:
self.Log("\n\nPortfolio at : {0}".format(self.Time))
summary = {}
invested = [ x.Symbol.Value for x in self.Portfolio.Values if x.Invested ]
for symbol in invested:
hold_val = round(self.Portfolio[symbol].HoldingsValue, 2)
abs_val = round(self.Portfolio[symbol].AbsoluteHoldingsValue, 2)
pnl = round(self.Portfolio[symbol].UnrealizedProfit, 2)
qty = self.Portfolio[symbol].Quantity
price = self.Portfolio[symbol].Price
summary[symbol]=[hold_val,abs_val,pnl,qty,price]
df=pd.DataFrame(summary)
df.index = ['hold_val', 'abs_val', 'pnl', 'qty','price']
df=df.T
hold_val_total= df['hold_val'].sum()
df = df.assign(weight=df['hold_val']/hold_val_total)
self.Log(df)
class SymbolData:
def __init__(self, symbol, algorithm, resolution):
self.symbol = symbol
self.price = 0.00
self.InsightDirection = InsightDirection.Flat
self.kama = algorithm.KAMA(symbol, 10,2,30, resolution)
self.mom = algorithm.MOM(symbol, 14, resolution)
self.roc = algorithm.ROC(symbol, 9, resolution)
self.ema13 = algorithm.EMA(symbol, 13, resolution)
self.ema63 = algorithm.EMA(symbol, 63, resolution)
self.ema150 = algorithm.EMA(symbol, 150, resolution)
self.fkama = False
self.fmom = False
self.froc = False
self.fema = False
def getInsight(self, price):
self.price = price
self.fkama = self.price>self.kama.Current.Value
self.fmom = self.mom.Current.Value>0
self.froc = self.roc.Current.Value>0
self.fema = self.ema13.Current.Value>self.ema63.Current.Value>self.ema150.Current.Value
if self.fmom and self.fkama and self.fema and self.froc:
self.InsightDirection= InsightDirection.Up
if not self.fmom or not self.fkama or not self.fema or not self.froc:
self.InsightDirection = InsightDirection.Down